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The purpose of this thesis is to develop analysis and synthesis tools to improve the

dynamic performance of reconfigurable systems.  For simplicity, without losing

generality and physical insight, this dissertation is focused on planar motion.  Various

control law strategies are considered and evaluated for the non-minimum phase, non

strictly positive real, time variant system.  The strategies include indirect and direct

model reference adaptive controllers; and fixed, robust, and optimal controllers.

Particular emphasis is on enabling real time implementation and reducing the requisite

number of experiments to identify the time varying system.  System identification is

accomplished for the kinematic nonlinear system via the observer Markov parameters

using data gathering experiments of a minimum of arm orientations.  In addition, the

observer Markov parameters can be utilized to reduce the data and improve system

identification results.  The identified time varying model is augmented with a band pass

filter for frequency weighting and is shown to reduce the controller size.  A novel

Spline Varying Optimal (SVO) controller is developed for the kinematic nonlinear

system.  An example problem is discussed, all controller coefficients in the SVO

controller are very closely approximated by a third order polynomial in the elbow pitch

angle, theta.  There are several advantages to using the SVO controller, in which the

spline function approximates the system model, observer, and controller gain.  They

are:  the spline function approximation is simply connected, thus the SVO controller is

more continuous than traditional gain scheduled controllers when implemented on a
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time varying plant;  it is easier for real time implementations in storage and

computational effort; where system identification is required, the spline function

requires fewer experiments, namely four experiments; and initial startup estimator

transients are eliminated.  The SVO compensator was evaluated on a high fidelity

simulation of the Shuttle Remote Manipulator System.  The SVO controller

demonstrated significant improvement over the present arm performance:  (1) Damping

level was improved by a factor of 3;  (2) Peak joint torque was reduced by a factor of 2

following Shuttle thruster firings.
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Âob Observer system matrix Âob = Tob
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CHAPTER 1

INTRODUCTION

One of the fundamental problems in the operations of flexible manipulators in space is

the duration and rate of decay of their oscillatory motions.  Robotic manipulator arms

have traditionally been modeled as composed of rigid links, with collocated actuators

and sensors, to ensure stable and reliable control.  In order for the arms to remain rigid

while carrying a payload, they must typically be made with heavy elements, requiring

in turn larger and heavier actuators.  These facts have motivated the recent interest in

using lightweight, higher performance robots for both commercial and space-based

applications.  The advantages of such lightweight manipulators are many, including

faster system response, lower energy consumption, smaller actuators and trimmer

mechanical design.  Obvious tradeoffs, however, complicate the problem of flexible

manipulator control, which focuses primarily on the controller design to compensate for

flexible effects.

Traditionally, ground based manipulators designed to handle payloads in the presence

of gravity weigh 100-200 times the weight of the assigned payload.  However, space-

based robots such as the Shuttle Remote Manipulator System (RMS), are designed to

maneuver payloads in the absence of gravity.  Due to mass and volume constraints

these manipulators have relatively thin (low stiffness) booms, yet they maneuver

payloads weighing 30-40,000 lb.  The corresponding manipulator to payload weight

ratio is 0.005:1.  In addition, space-based robots tend to be much longer than their

terrestrial counterparts.  The fundamental bending frequency of these structural systems
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is proportional to the square root of the stiffness to payload mass, thus the robotic

systems exhibit long periods of oscillatory motion following routine operational

maneuvers.  As a result, the Shuttle RMS safety operational constraints require

astronauts to wait extended periods of time before they are allowed to command the

next maneuver.

1.1  Background and Previous Research

There are two distinct approaches to reduce residual motions of robotic manipulators

following commanded motions.  One approach is to reduce the residual oscillations by

using input command shaping techniques (Seering and Singer, 1990 ).  An adaptive

precompensator can be implemented by combining a frequency domain identification

scheme which is used to estimate on-line the modal frequencies and subsequently

update the band stop interval or the spacing between the impulses (Tzes, 1989).  The

advantages of the input shaping approach are that accurate identification of plant

parameters, such as frequency and damping, is not critical, and there is no knowledge

requirement for the controller influence coefficients.  One disadvantage is a significant

phase lag between the desired input and corresponding motion of the manipulator.  This

move time penalty is on the order of one period of the first mode of vibration.  The

operator commands the arm to stop, but the end point will continue to move for a few

seconds.  As a result, the manipulator does not have the same “feel” as the current

manipulator when used by a trained operator, which could be detrimental when precise

positioning is required.  Another disadvantage of command shaping is that it cannot

reject unknown disturbances.  For example, oscillations of the Shuttle RMS that result

from the Shuttle thruster firings cannot be damped by an input shaping method applied

solely to the Shuttle RMS.



3

The second approach of employing output feedback to reduce vibration has been

selected for this thesis.  In this approach, output feedback of measurements of the

system response is used in a compensator to derive joint commands designed to damp

the residual motions.  An example of this second approach is the work by Prakash,

Adams and Appleby (1989), who used a detailed analytical model of the manipulator to

design model based compensators.  Other methods for robust controller design of

flexible link arms and nonlinear control methods were suggested by Korolov, Chen

(1989) and Kreutz and Jamieson, respectively.  In Juang (1993) and Feddema (1990) a

model-independent controller for large angle position control of a two and six-degree of

freedom robot was developed.  However, in these methods the passive controller

requires collocation of sensor and actuator.  Kanoh and Lee (1985) studied a single link

flexible arm with a concentrated mass at the tip; similarly a 12.5 foot steel beam was

constructed at the Jet Propulsion Laboratory (Schaechter, 1982).  Both of these studies

used collocated sensors and actuators in their experiments.  

Shoenwald (1991) and Eisler (1990) analyzed the experimental results of a minimum

time trajectory control scheme for a two link flexible robot.  An off line optimization

routine determined a minimum time, straight line tip trajectory, which stayed within the

torque constraints of the motor.  The control strategy used a linear quadratic regulator to

determine the feedback gains based on a finite element model linearized about the

straight line tip trajectory.  At some points along the trajectory the gains varied

considerably.  When the set of gains was used to control the system, the results were

less than satisfactory.  Although the arm did reach the desired end point, there was

considerable error in the tip position along the way.  In an attempt to reduce the

sensitivity of the feedback gains to modeling errors, a single gain matrix, optimized for

the average of the workspace, was used.  The author (Eisler, 1990) felt that a better
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solution would be to use a set of three to four gains that would be scheduled to become

active when major changes in the states occurred.

Optimal control has been applied to the nonlinear multilink problem using end point

measurement (non-collocation) with limited success.  Oakley (1989, 1990b) explores a

modeling and mode-selection technique to improve the prediction of the manipulator

end-point position.  The nonlinear end-point controller based on end-point sensing

incorporates a linear quadratic regulator and a nonlinear estimator.  Experiments show

that this technique significantly improves manipulator position tracking over commonly

used collocated control techniques.  End point sensing is achieved using a CCD

television camera to track special reflectivity targets located at the manipulator end-

point.  The nonlinear rigid-flex equations of motion were linearized about an elbow

angle of 75˚ in the constant regulator and estimator gain matrices, thus constraining the

usable workspace to small perturbations around the linearized plant.  In Oakley (1990a)

a 278 state controller was able to operate over a large workspace while sacrificing on

performance.  The authors indicated that if the controller were gain scheduled, the

performance would be much improved for operating points far from the linearization

point.  In Seraji (1986) and Hasting (1985), multivariable control is applied to a two-

link robot.  The control design is based on a linearized model of the robot dynamics,

and it was noted that perturbations of variables from their nominal values must be kept

small.  When large excursions of variables are expected, the controller must be updated

at suitable intermediate positions in order to improve the performance of the control

system.  

In Matsuno (1990) a control law is developed for a 6 degree of freedom robot using

acceleration feedback.  Matsuno showed that the end effector tip trajectories were

superior in terms of residual motion over the open loop trajectories, although the



5

available workspace was constrained within small perturbations around the linearized

plant.  In Yurkovich (1990), identified models of a two link manipulator were used in

static and dynamic fixed controller design, where end point accelerations were used.

The controller performance was found to be unsatisfactory for large system parameter

variations, especially the elbow joint angle.  

It has been know for some time (Gevarter, 1970) that if a flexible structure is controlled

by locating every sensor exactly at the actuator it will control, then stable operation is

easy to achieve.  Nearly all commercial robots and most flexible spacecraft are

controlled in this way for this reason.  Conversely, when one attempts to control a

flexible structure by applying control torques at one end that are based on a sensor at

the other end, the problem of achieving stability is severe.  Solving it is an essential

step for better control in space; the space-shuttle arm is a cogent example.  The next

generation of industrial robots will also need such control capability, since they will

need to be much lighter in weight (to achieve quick response with less power), and they

will need to achieve greater precision by employing end-point sensing (Cannon, 1984).

A direct-drive, laser cutting robot, for example, tracks a curved trajectory, while the

tracking error at the arm tip is required to be less than ±  0.2 mm  (Asada, 1987).

Extremely heavy arm inertia resulted when one tries to make the arm construction

sufficiently stiff so that the elastic deformation is less than ±  0.2 mm at the arm tip

(Asada, 1990).

It has been shown (Hillsley, 1991; Yurkovich, 1990; Oakley, 1988; Kotnik, 1988) that

rigid dynamics control alone cannot achieve accurate and steady link endpoint position.

Kotnik (1988) and Wells present single link laboratory results for a flexible manipulator

in which four separate control strategies are compared and contrasted.  Namely, the

control schemes compared are: compensation using classical root locus techniques with
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endpoint position feedback, a full state feedback, observer-based design, and

compensation using endpoint acceleration feedback.  The results indicated that

acceleration feedback has great potential in flexible manipulator control.  The study

pointed out that the use of acceleration feedback for flexible robot arm control has

intuitive appeal from an engineering design viewpoint.  Primary advantages include the

fact that sensing acceleration for control implementation is accomplished with structure

mounted devices so that camera position or field of view are not issues, and that from a

practical viewpoint implementation is easy and inexpensive.

A similar study was performed in Scott (1993), where arm tip acceleration feedback

was used in a model-based compensator for the six degree of freedom Shuttle RMS,

augmented with a mounted 3000 pound payload.  However, in this study the

workspace was constrained to small perturbations about a linearized plant.  In another

study by Demeo (1992) the workspace of the RMS was extended by developing a

single controller optimized over a range of workspaces using a Quasi-Newton

numerical optimization routine.  The control design presented here was relatively simple

in nature, with a motor shaft position feedback loop for rigid body motion control and

the endpoint acceleration feedback loop for flexible motion control.  System

identification studies were employed in lieu of analytical modeling exercises because

system identification would become increasingly necessary as the level of complexity

for such systems increases.  In this study the sensor dynamics and actuator dynamics

were lumped into a single aggregate system.  The use of digital filtering techniques

enhanced the quality of the signals used in the control design, and was equivalent to an

a-priori frequency weighted design.

Other feedback methods to reduce vibration include adaptive control algorithms which

is an attractive feedback approach since the plant is changing in time (Lucibello, 1990,
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Balestrino, 1983, and Nicosia, 1984, Harashima and Ueshiba, 1986).  Adaptive

control can be divided into two subcategories; indirect and direct.  Indirect (or explicit)

identifies explicit parameters of the plant.  Direct (or implicit) has no parameter

identification.  The indirect Model Reference Adaptive Controller (MRAC) does not

solve the non-collocated actuators and sensor problem well for non-minimum phase

plants (Liang, 1990).  The ‘one step ahead control law’ inverts the plant transfer

function, thus non-minimum phase plants are not stable for this control law.  Even one-

link flexible arms, where linear dynamic models are appropriate (Cannon, 1984),

standard inversion techniques aimed at output trajectory reproduction fail, due to the

non-minimum phase nature of the transfer function from joint torque to tip position.  A

similar difficulty is present when working with the full nonlinear dynamics of a two or

multilink arm, due to the presence of an unstable zero dynamics (De Luca, 1989).  The

Direct MRAC requires the plant to be Strictly Positive Real (SPR) when the plant model

states are not available for feedback.  A new version of the Direct MRAC has been

developed (Galvez, 1991) which does not require the SPR property of the plant.  With

this technique a Dynamic Projection Model (DPM) is adaptively designed so that it

shares a common point on the Nyquist plot at zero frequency with the plant.  The

definition of positive definite systems is summarized in Appendix A.

Dissipative compensators offer an attractive alternative because they circumvent the

sensitivity problems associated with model-based compensators.  However, the

practical usefulness of these controllers is limited because stability depends on the

system parameters to be “passive.”  In the context of network theory, a passive system

represents the driving point impedance of a dissipative network.  A network is called

dissipative if it consists only of resistors, lossy inductors, and lossy capacitors, which

dissipate energy.  Dissipative compensators use collocated compatible actuators and

sensors (Joshi, 1991).
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Table 1.1 summarizes several control design techniques.  Each control technique is

evaluated in terms of constraints, assumptions, and performance models required.  For

a reconfigurable system, this thesis proposes the Spline Varying Optimal (SVO)

Compensator, which is outlined in Chapter 5.

On the left hand side of Table 1.1, the constraints and fundamental assumptions include

non-minimum phase and Strictly Positive Real (SPR) requirements on the plant and/or

the controller (Liang, 1990).  The reference or performance model refers to the

requirement of a dynamic model which the controller is required to track.  Adaptive

plant realization refers to the requirement of real time plant realizations.  To be fair to

the non proposed controllers depicted in Table 1.1, some of the constraints are

theoretical in nature, as opposed to practical.  For example, although sufficient stability

theory is not yet available, these controllers have performed well for certain systems

that violate the plant and or controller constraints.  Thus the conditions are sufficient,

but not necessary as outlined (Liang, 1990).  In addition, there are operational

conditions of the SVO controller which are required.  These conditions are outlined in

section 4.1.

As shown in Table 1.1, both the direct and indirect MRAC require a reference or

performance model.  How one derives such a model for a time varying system is not

clear.  In addition, requiring a plant to follow such a reference model may result in

moving plant poles unnecessarily large distances in the root locus plane to achieve

model following properties.  Both the indirect and direct adaptive control

methodologies require extensive use of on-board computer hardware.  
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Table 1.1

Summary of Controller Design Techniques

IMRAC CGT-DRMAC DPM DRMAC Proposed in
this thesis

Type of
Controller

Model
Following Feed
forward

Model
Following Feed
forward

Model
Following
Feedback

Spline
Varying
Optimal
(SVO)

Plant
Constraints

Non-minimum
phase

SPR None None

Fundamental
Assumption

Ac=A+BG(t)C
remains SPR
for all time

None None

Reference or
Performance
Model Required

Yes Yes Yes None

Adaptive Plant
realization
Required

Yes None Yes None

1.2  Thesis Objectives and Overview

The primary objective of this thesis is to develop analysis and synthesis tools which do

not demand the plant constraints, and adaptive realizations as outlined in Table 1.1.

The focus is to improve the dynamic performance of a nonlinear flexible reconfigurable

structure, while minimizing hardware and software modifications to the overall system.

Minimal hardware in this sense implies using few and lightweight sensors and

actuators, for example, taking advantage of the actuators that are already on a

reconfigurable structure to improve dynamic performance, and using inexpensive flight

qualified sensors such as accelerometers.  Minimal software implies using adroit

techniques to minimize the computational burden of the dynamic controller (i.e., small

order controller).  In addition, a major emphasis is to reduce the requisite number of

system identification experiments to characterize the system for control law
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development.  Particular attention is focused on the type of manipulator used on the

Shuttle Remote Manipulator System.

The approach taken for control law design relies on identifying mathematical models

from data.  Identified models eliminate the need to develop accurate models of

operational safety functions, sensor, and actuator transfer functions of the system under

control.  Experience with complex hardware in the NASA Langley lab has shown that

as system complexity increases, analytical model based controllers require a large order

compensator, and may not be as accurate for control law development as identified

reduced order mathematical models (Belvin, 1991).  

In this thesis the dynamic behavior of a space robot maneuvering a heavy payload is

exploited to design several very small order compensators that improve robot dynamic

performance over a large workspace.  There are two main categories of nonlinearities

associated with a multidegree of freedom manipulator; kinetic and kinematic.  The

kinetic nonlinearities are associated with nonlinear energy dissipation in the joints, for

example gearbox stiction, friction and backlash.  The kinematic nonlinearities include

the nonlinear behavior induced by large angle motion of the manipulator joints,

resulting in configuration changes, which alter the open loop dynamics of the system.

Addressing the kinematic nonlinearities is the main focus of this thesis; although the

nonlinear controllers will be evaluated on a high fidelity simulator which includes the

aforementioned kinetic nonlinearities.  A two link planar model will be used to address

the kinematic nonlinear problem.  The high fidelity simulator is utilized to investigate

various collocated and non-collocated control strategies, and to evaluate the low order

controller on a highly nonlinear system.  Another objective of this thesis is to identify

sensor locations on the structure that enable a time varying non-collocated controller to

operate over a wide variety of arm orientations.
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It is shown that the wait time penalty incurred by operators is largely dominated by the

modal damping of the lowest fundamental mode of the manipulator dynamics.  The

damping of this fundamental mode is increased by minimizing a cost performance index

evaluated over the workspace of the manipulator.  A non-dimensional parameter

dependent mathematical model of a two link manipulator is analyzed to investigate

various control law designs.  Three different compensators that utilize non-collocated

measurement of the time varying system are investigated.  The compensators include

fixed, robust, and spline varying optimal (SVO) compensators.  This thesis develops a

method to implement each of the compensators in a manner which reduces the

computational burden of real time implementations.

The objectives of the compensator design are as follows:

• To determine the performance and limitations of collocated control

versus non-collocated control.

• To determine how a traditional fixed gain dynamic compensator

performs for a plant that is changing in time.

• To determine the performance of a fixed compensator, and if the

resultant stability margins are sufficient to work over a large workspace.

• To determine the performance of traditional robust compensator designs

over a large workspace.

• To determine what the optimal state dependent compensator is for the

time varying plant.  What is its performance in relation to the fixed and

robust compensator.

• To determine what type and number of experiments are required to

design a SVO compensator.  To determine how many different arm
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orientations are necessary to characterize the dynamics over the

workspace.

To aid this investigation, the time varying optimal compensator is implemented on a

Draper simulation of the Shuttle Remote Manipulator System (Gray, 1985) .  The fixed

gain compensator developed by the author was evaluated by astronauts at the Johnson

Space Center.  The astronaut/operator’s assessment of the fixed gain compensator

noted that there was a “significant increase in damping” (Lepanto, 1992).  It was noted

that “Our (NASA/Draper) philosophy has been to design a single compensator that

improves the performance of the RMS for a wide range of configurations, and it is clear

that the increase in damping at any one configuration will be less with this ‘one size fits

all’ compensator than with a compensator tuned to that specific configuration.”  Loads

reduction for the RMS with the fixed gain compensator was also cited as an important

factor several times during the sessions.  The time varying compensator demonstrated

significant improvement over the present arm performance (Scott, 1993):  (1) Damping

level was improved by a factor of 3 and (2) Peak joint torque was reduced by a factor

of 2 following Shuttle thruster firings.  It is expected that with an optimal time varying

compensator the damping and the loads will be improved for a larger workspace of the

manipulator.

1.3 Thesis Organization

Chapter 2 introduces a mathematical model of a manipulator that can be used to

investigate various control law strategies.  Lagrangian dynamics are applied to

determine the kinetic and potential energies for the two link system.  The resultant

dynamic equations are then organized into a state space model suitable for use in linear
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control system design.  First a two link manipulator is discussed.  The equations of

motion are non-dimensionalized to provide a greater understanding of how physical

parameters affect the open loop dynamics.  A six degree of freedom manipulator is used

to indicate, and discuss the relative sensitivity of the various input-output transfer

functions to the joint degrees of freedom, and indicate why the two degree of freedom

model approximates the larger degree of freedom system.  Some fundamental

mathematical properties of manipulators such as the frequency separation and the modal

contribution to the open loop infinity norm are discussed.  

In Chapter 3 the nonlinear system is identified using the observer Markov Parameters.

Data is gathered from four experiments as the elbow joint angle is moved from 0

degrees to 90 degrees.  System identification is then applied to the data to identify the

observer Markov parameters.  The observer Markov Parameters are then used to obtain

the system state space matrices as a function of theta.  

In Chapter 4 the compensator design is discussed and the control strategy is introduced.

Three compensators are investigated: a fixed gain compensator, a robust dynamic

compensator, and the Spline Varying Optimal (SVO) compensator.  An example

problem is included to discuss the performance and stability comparisons of the various

controller strategies.  

In Chapter 5 various control strategies are applied to a high fidelity simulation of the

shuttle manipulator system.  The approach to the RMS active damping feasibility study

is developed as follows.  First, a set of payloads and arm configuration combinations

consistent with the types of payloads expected during Space Station assembly were

defined.  Second, RMS dynamics and operational characteristics were examined using

the nonlinear Draper RMS Simulator (DRS) code (Gray, 1985).  The determination of
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active damping augmentation feasibility involved the design and simulation of candidate

damping augmentation control laws.  For this purpose, system identification methods

were employed on output data from the DRS to identify time varying models which

closely match the DRS response.  With the nonlinear control design models, various

active control law design concepts were evaluated, as were the requirements for

feedback sensors to measure arm motions.  The final step was the simulation of the

active damping control laws in a modified version of the DRS, to determine the effects

of system nonlinearities and computer time delays.  Chapter 6 includes Conclusion and

Recommendations.
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CHAPTER 2

OPEN LOOP MANIPULATOR MODELING

The problem of modeling articulated flexible mechanical systems has been studied

extensively.  Cannon and Schmitz (1984) published the pioneer work in the area of

control and modeling of flexible robot arms.  In that work, the mathematical modeling

and the initial experiments have been carried out to address the control of a one link

flexible robot arm where the position of the end effector (tip) is controlled by measuring

that position and using the measurement as a basis for applying control torque to the

other end of the arm (joint).  Book, Maizza-Neto and Whitney (1975) directly

approximate a two link flexible robot with a linear model derived from a nonlinear

distributed parameter model.  In the papers of Balas (1978) and Karkkainen and Halme

(1985) a modal approach to the problem of approximating a general flexible mechanical

system is used.  Book (1979) uses a special technique called lumping approximation to

analyze flexible mechanical systems, assuming that the links bend in a first mode of

vibration.  Judd and Falkenburg (1985) apply this method to non rigid articulated

robots; the same technique is adopted by Sunada and Dubowsky (1983) and modified

in such a way that more vibration modes are allowed.  Chassiakos and Bekey (1985)

approximate the distributed parameter system response.  Truckenbrodt (1982) analyzes

the deformation of a chain of elastic links using the Ritz-Kantorovitch method and

studies the dynamic behavior linearizing the related differential equations.
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No attempt is made in this thesis to improve the modeling techniques for flexible

manipulators.  Including high order effects such as foreshortening of the beam only

obfuscate the issues discussed in the control law design.

This chapter discusses the open loop manipulator modeling.  First a two link

manipulator is discussed.  The equations of motion are non-dimensionalized to provide

a greater understanding of how physical parameters affect the open loop dynamics

(Smart, 1993).  A six degree of freedom manipulator model is presented to discuss the

relative sensitivity of the various input-output transfer functions to the joint degrees of

freedom, and to indicate why the two degrees of freedom model approximates the

larger degree of freedom system.  The frequency dependence on the payload mass is

then introduced.  It is noted that for heavier payloads there is a larger separation

between the first and higher order or residual modes.  If a payload 100 times the mass

of the arm is considered, the 2nd modal frequency is 98 times the frequency of the 1st

mode.  In Section 2.4 the open loop infinity norm is utilized to indicate the

predominance of the fundamental mode to the overall performance of the open loop

manipulator.

2.1  Two Degree of Freedom Manipulator

The material in this section describes a time varying linear model of a flexible two link

manipulator (Figure 2.1).  The mathematical model forms the basis for investigating

various control strategies covered in later sections.

The mechanical joint corresponding to θ1 angle is referred to as the shoulder joint, and

the joint corresponding to the θ2   angle is referred to as the elbow joint.  In Figure 2.1,

m1 and m2  refer to point masses at the first and second links respectively.  The method
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employed to generate the model utilizes a separable formulation of assumed modes to

represent the transverse displacement due to bending.  Lagrangian dynamics are applied

to determine the kinetic and potential energies for the two link system (Smart, 1993).

The resultant dynamic equations are then organized into a state space model suitable for

use in linear control system design.

Figure 2.1 Flexible Manipulator

The slenderness ratio of each link is such that rotary inertia and shear deformation

effects may be neglected (i.e. assuming Euler-Bernoulli beam theory).  In the following

analysis it is assumed that the squared flexible deflections are negligible compared to

the axial dimension squared (Hasting, 1986).  The definition of the variables used in

the model generation are shown in Table 2.1.

The coordinate systems are defined as follows.

i1
j1









=
cos θ1( ) sin θ1( )

−sin θ1( ) cos θ1( )










I

J








(2.1.1)
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i2
j2









=
cos ′w1,L1( ) sin ′w1,L1( )

−sin ′w1,L1( ) cos ′w1,L1( )












i1
j1









(2.1.2)

i3
j3









=
cos θ2( ) sin θ2( )
−sin θ2( ) cos θ2( )











i2
j2









(2.1.3)

In Equation (2.1.2) it is implicitly assumed that the geometric angle at the tip of link 1

created by the elastic deformation of the link is approximately ∂w1 / ∂x1( )x1 = L1
.  In

addition, note that the rigid body rotation of the second member is relative to the slope

at the end of the first link.  The coordinate axis in (2.1.1-3) are depicted in Figure 2.1.

I, and J represent the local vertical and horizontal axis respectively.  The coordinates i1,

and j1 represent the rigid body motion of link 1 with respect to the local vertical axis I,

and J.  The coordinates i2 , and j2 represent the rigid body rotation of link 2 with

respect to i1, and j1.  

Table 2.1

Definition of Variables used in Model Generation

ρi Volumetric density of link i

Ei Modulus of elasticity of link i

Aai Cross sectional area of link i (constant)

Ii Area moment of inertia of link i

Li Length of link i

wi (xi ,t) Transverse deflection of link i

′w1,L1
First spatial derivative of link 1 evaluated at L1

ẇ2 L2
First time derivative of link 2 evaluated at L2

xi Spatial variable for link i
t Time
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Using the coordinate transformations of equations (2.1.2) and (2.1.3), the position for

an elemental mass on link 2 at x2  takes the form

  
r
r2,x = L1î1 + w1,L1

ĵ1 + x2î3 + w2 ĵ3 (2.1.4)

The corresponding velocity for an elemental mass on link 2 at x2  is

  

ṙ
r2,x = L1θ̇1 + w1,L1( ) ĵ1 − w1,L1

θ̇1î1 + x2ω + ẇ2( ) ĵ3 − w2ωî3 (2.1.5)

where

ω = θ1 + θ2 + ˙ ′w1,L1
(2.1.6)

the dot product of the element velocity is given by

  

ṙ
r2,x ⋅ ṙ

r2,x = L1
2θ̇1

2 + 2L1θ̇1 ẇ1,L1
+ ẇ1,L1

2 + x2
2ω 2 + 2x2ωẇ2 + ẇ2

2

+2L1 θ̇1 x2ω cos θ2( ) + 2L1θ̇1 ẇ2 cos θ2( )
+2 ẇ1,L1

x2ω cos θ2( ) + 2ẇ1,L1
ẇ2 cos θ2( )

(2.1.7)

In accordance with the small angle approximation made in (2.1.2), it is assumed that

′w1,L1
 is small such that cos ′w1,L1( ) ≅ 1, sin ′w1,L1( ) ≅ ′w1,L1

.  Thus

cos Ω + ′w1,L1( ) ≈ cos Ω( ) − ′w1,L1
sin Ω( )

sin Ω + ′w1,L1( ) ≈ sin Ω( ) + ′w1,L1
cos Ω( )

(2.1.8)

where Ω  is some linear combination of the rigid body rotations.  Furthermore, it is

assumed that terms involving the deflection functions and their derivatives with powers

greater than two are negligible, and the kinetic and potential energies may be reduced to

a quadratic form.  The above assumptions were made in Smart (1992) where

experimental results were used to confirm the assumption.

In determining the kinetic energy of the two link system, only the transverse elastic

deformation of each link, wi (xi ,t) , i=1,2, relative to a known rigid body rotation, θi ,
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i=1,2, is considered.  Using Equation (2.1.8) with Ω = θ2 , the quadratic form of the

kinetic energy for the first and second link, T , is

  

T = TL1
+ TL2

= 1
2

ρA( )10

L1∫
ṙ
r1,x ⋅ ṙ

r1,x( )dx1 + 1
2

m1
ṙ
r1,x ⋅ ṙ

r1,x( )
x1 = L1

+ 1
2

ρA( )20

L2∫
ṙ
r2,x ⋅ ṙ

r2,x( )dx2 + 1
2

m2
ṙ
r2,x ⋅ ṙ

r2,x( )
x2 = L2

(2.1.9)

In Equation (2.1.9) the tip masses are modeled as lumped masses without rotary

inertia.  The potential energy is derived assuming:  isotropic beams are in a state of pure

bending, plane sections remain plane after bending, Hooke’s Law is applicable and

only small displacements are considered.  In addition, the assumptions of Equation

(2.1.8) are used whereby Ω = θ1 + θ2 .  

The equations of motion are developed using the assumed modes method in

conjunction with Lagrange’s equation.  In doing so, the transverse deflection functions

of each beam are written as a linear combination of admissible functions of the spatial

coordinate multiplied by time-dependent generalized coordinates (Meirovitch, 1967).

That is,

w1(x,t) = φi (x1)ai (t)
i=0

∞

∑ = φ Ta = aTφ

w2(x,t) = ψ j (x2 )cj (t)
j=0

∞

∑ = ψ Tc = cTψ
 (2.1.10)

The quadratic form of the kinetic energy for the first link, TL1
, is

TL1
= 1

2
J1

(1)θ̇1
2 + 1

2
ȧT Ma

(1)ȧ + θ̇1 ȧT M1a
(1) (2.1.11)
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where

J1
(1) = ρA( )

0

L1∫ 1
x1

2dx1 + m1 x1
2

x1 = L1
(2.1.12)

Ma
(1) = ρA( )

0

L1∫ 1
φφ Tdx1 + m1φφ T

x1 = L1

(2.1.13)

M1a
(1) = ρA( )

0

L1∫ 1
x1φdx1 + m1 x1φ x1 = L1 (2.1.14)

where J1
(1)  is the inertia term for the first link, M1a

(1)T  is the feedforward term from the

joint angle θ  to the generalized coordinate or tip displacement term q .  M1a
(1) is the

feedback term from the generalized tip displacement to the joint angle θ , and u  is the

generalized input.

The quadratic form of the kinetic energy for the second link, TL2
, is

TL2
= 1

2
J1

(2)θ̇1
2 + J12θ̇1θ̇2 + 1

2
J2

(2)θ̇2
2 + θ̇1 ȧT M1a

(2)

+θ̇2ȧT M2a + 1
2

ȧT Ma
(2)ȧ + θ̇1 ċT M1c + θ̇2ċT M2c

+ 1
2

ċT Mcċ + ċT Mcaȧ

(2.1.15)

where

J1
(2) = ρA( )

0

L2∫ 2
L1

2 + x2
2 + 2L1x2 cos θ2( )( )dx2

+m2 L1
2 + x2

2 + 2L1x2 cos θ2( )( )
x2 = L2

(2.1.16)
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J2 = ρA( )
0

L2∫ 2
x2

2dx2 + m2 x2
2

x2 = L2
(2.1.17)

J12 = ρA( )
0

L2∫ 2
x2

2 + L1x2 cos θ2( )( )dx2 + m2 x2
2 + L1x2 cos θ2( )( )

x2 = L2

(2.1.18)

M1a
(2) = ρA( )

0

L2∫ 2
L1φL1

+ x2
2 ′φL1

+ L1x2 ′φL1
cos θ2( ) + x2φL1

cos θ2( )( )dx2

+ m2 L1φL1
+ x2

2 ′φL1
+ L1x2 ′φL1

cos θ2( ) + x2φL1
cos θ2( )( )

x2 = L2

(2.1.19)

M2a = ρA( )
0

L2∫ 2
x2

2 ′φL1
+ x2φL1

cos θ2( )( )dx2

+m2 x2
2 ′φL1

+ x2φL1
cos θ2( )( )

x2 = L2

(2.1.20)

Ma
(2) = ρA( )

0

L2∫ 2
φL1

φL1

T + x2
2 ′φL1

φL1

T + 2φL1
′φL1

T cos θ2( )( )dx2

+ m2 φL1
φL1

T + x2
2 ′φL1

φL1

T + 2φL1
′φL1

T cos θ2( )( )
x2 = L2

(2.1.21)

M1c = ρA( )
0

L2∫ 2
x2ψ + L1ψ cos θ2( )( )dx2 + m2 x2ψ + L1ψ cos θ2( )( )

x2 = L2
(2.1.22)

M2c = ρA( )
0

L2∫ 2
x2ψdx2 + m2 x2ψ

x2 = L2
(2.1.23)

Mc = ρA( )
0

L2∫ 2
ψψ Tdx2 + m2 ψψ T

x2 = L2
(2.1.24)
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Mca = ρA( )
0

L2∫ 2
x2ψ ′φL1

T + ψφL1

T cos θ2( )( )dx2

+m2 x2ψ ′φL1

T + ψφL1

T cos θ2( )( )
x2 = L2

(2.1.25)

The quadratic form of the potential energy U  is

U = 1
2

EI( )1 ′′w1( )2
dx1 +

0

L1∫ 1
2

EI( )2 ′′w2( )2
dx20

L2∫ (2.1.26)

However

Ka = EI( )1 ′′φ ′′φ T( )
0

L1∫ dx1

Kc = EI( )2 ′′ψ ′′ψ T( )
0

L2∫ dx2

(2.1.27)

Substituting the relations of (2.1.10) into the kinetic and potential energies, the

Lagrangian L, is  

L = T − U

= 1
2

J1
(1)θ̇1

2 + 1
2

ȧT Ma
(1)ȧ + θ̇1 ȧT M1a

(1)

+ 1
2

J1
(2)θ̇1

2 + J12θ̇1θ̇2 + 1
2

J2
(2)θ̇2

2 + θ̇1 ȧT M1a
(2)

+θ̇2ȧT M2a + 1
2

ȧT Ma
(2)ȧ + θ̇1 ċT M1c + θ̇2ċT M2c

+ 1
2

ċT Mcċ + ċT Mcaȧ − 1
2

ȧT Kaa − 1
2

ċT Kcc

(2.1.28)

− −1

2

1

2
a K a c K cT

a
T

c

The equations of motion are determined according to Lagrange’s equation, which for

conservative systems states

∂
∂t

∂L

∂q̇i









 − ∂L

∂qi
= 0 (2.1.29)
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where

q = θ1 θ2 aT cT[ ]T
(2.1.30)

Assuming the squared flexible deflections are negligible compared to the axial

dimension squared, and the square of the rigid body angular velocity are small

(Hasting, 1986), the Lagrangian reduces to

M˙̇q + Kq = 0 (2.1.31)

where M  and K  are given by

M =

J1
(1) + J1

(2) J12 M1a
(1) + M1a

(2)( )T
M1c

T

J12 J2 M2a
T M2c

T

M1a
(1) + M1a

(2) M2a Ma
(1) + 1

2
Ma

(2) + Ma
(2)( )T

Mca
T

M1c M2c Mca Mc























(2.1.32)

K =

0 0 0 0

0 0 0 0

0 0 Ka 0

0 0 0 Kc



















(2.1.33)

The following variables are used to non-dimensionalize the equations of motion.

η1 = m1

ρAL( )1
, η2 = m2

ρAL( )2

, ηL =
ρAL( )2

ρAL( )1
, ηe = η1 + ηL 1 + η2( ) , rL = L2

L1

,

µi = EI

ρAL4





 i

, Mi = ρAL( )i , φ* = φ
L1

, ψ * = ψ
L2

, ξ1 = x1

L1
, and ξ2 = x2

L2

Whereη1 andη2  are non-dimensional parameters which relate the mass at the end of the

link to the mass of the link. ηL  represents the mass ratio between the first and second
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link and ηe is a non-dimensional parameter which simplifies the equations. rL  is the

non-dimensional parameter which relates the length ratio between the two links.  µi  are

the non-dimensional stiffness properties of the respective links.  Mi  are the mass of the

respective links.  φ*  andψ * are the normalized admissible functions of the spatial

coordinates φ  and ψ .  ξ1 andξ2  are the normalized displacement along the axis of the

link.

Accordingly, the matrices defined in (2.1.32) and (2.1.33) become

J1 = 1
3

+ ηe + ηLrL
2 1

3
+ η2















+ ηLrL 1 + 2η2( ){ }cos θ2( )

= J1,i
* + J1,ii

* cos θ2( )
(2.1.34)

J12
* = 1

3
+ η2




+ 1
rL

1
2

+ η2














cos θ2( )

= J2
* + J12,ii

* cos θ2( )
(2.1.35)

J2
* = 1

3
+ η2 (2.1.36)

M1a
* = ξ1φ

*dξ1 + ηeφ1
*

0

1

∫{ } + ηLrL
2 1

3
+ η2





 ′φ1

*







+ ηLrL
1
2

+ η2




 φ1

* + ′φ1
*( )








cos θ2( )

= M1a,i
* + M1a,ii

* + M1a,iii
* cos θ2( )

(2.1.37)
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M2a
* = 1

3
+ η2





 ′φ1

*







+ 1
rL

1
2

+ η2














cos θ2( )φ1
*

= M2a,i
* + M2a,ii

* cos θ2( )
(2.1.38)

Ma
* = φ*φ*Tdξ10

1

∫ + ηeφ1
*φ1

*T{ } + ηLrL
2 1

3
+ η2





 ′φ1

* ′φ1
*T








+ ηLrL 1 + 2η2( )φ1
* ′φ1

*T{ }cos θ2( )
= Ma,i

* + Ma,ii
* + Ma,iii

* cos θ2( )
(2.1.39)

M1c
* = ξ20

1

∫ ψ *dξ2 + η2ψ *{ } + 1
rL

ψ *dξ2 + η2ψ1
*

0

1

∫













cos θ2( )

= M1c,i
* + M1c,ii

* cos θ2( )
(2.1.40)

M2c
* = ξ2ψ *dξ20

1

∫ + η2ψ1
* (2.1.41)

Mca
* = rLM2c

* ′φ1
*T{ } + ψ *dξ20

1

∫ + η2ψ1
*



φ1

*T





cos θ2( )

= Mca,i
* + Mca,ii

* cos θ2( )
(2.1.42)

Mc
* = M2L2

2 ψ *ψ *Tdξ20

1

∫ + η2ψ1
*ψ1

*T





(2.1.43)

Ka
* = EI

L




1

′′φ * ′′φ *Tdξ10

1

∫





(2.1.44)

Kc
* = EI

L




 2

′′ψ * ′′ψ *Tdξ20

1

∫



 (2.1.45)
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Where ′φ * denotes the derivatives with respect to the non-dimensional spatial variable

ξ1, and φ1
* denotes the evaluation of φ* at ξ1 = 1.  ′ψ * denotes the derivatives with

respect to the non-dimensional spatial variable ξ2 , and ψ1
* denotes the evaluation of

ψ * at ξ2 = 1.

The non-dimensional matrices defined in 2.1.37 - 2.1.45 are used to create the non-

dimensional system matrices.  

Msys,i
* =

J1,i
* ηLrL

2 J2
* M1a,i

* + M1a,ii
*( )T

ηLrL
2 M2c

*T

ηLrL
2 J2

* ηLrL
2 J2

* ηLrL
2 M2a,i

*T ηLrL
2 M2c

*T

M1a,i
* + M1a,ii

* ηLrL
2 M2a,i

* Ma,i
* + Ma,ii

* ηLrL
2 Mca,i

*T

ηLrL
2 M2c

* ηLrL
2 M2c

* ηLrL
2 Mca,i

* ηLrL
2 Mc

*





















(2.1.46)

Msys,ii
* =

J1,ii
* ηLrL

2 J12,ii
* M1a,iii

*T ηLrL
2 M1c,ii

*T

ηLrL
2 J12,ii

* 0 ηLrL
2 M2a,ii

*T 0

M1a,iii
* ηLrL

2 M2a,ii
* 1

2
Ma,iii

* + Ma,iii
*T( ) ηLrL

2 Mca,ii
*T

ηLrL
2 M1c,ii

* 0 ηLrL
2 Mca,ii

* 0





















(2.1.47)

Msys
* = Msys,i

* + Msys,ii
* cos θ2( ) (2.1.48)

Ksys
* =

0 0 0 0

0 0 0 0

0 0 µ1
2Ka

* 0

0 0 0 ηLrL
2µ2

2Kc
*



















(2.1.49)

which results in the second order form

Msys,i
* + Msys,ii

* cos θ2( )[ ] ˙̇q( ) + Msys
* q( ) = fu (2.1.50)
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where

q = θ1 θ2 aT cT[ ]T
(2.1.51)

The second order system matrices can be put in first order state-space form

ẋ = Ax + Bu (2.1.52)

where

x = θ1 θ2 aT cT θ̇1 θ̇2 ȧT ċT[ ]T
(2.1.53)

The first order state space form of (2.1.50) is given by (2.1.54)

θ̇1

θ̇2

φ̇L

ψ̇ L
˙̇θ1
˙̇θ2
˙̇φL

˙̇ψ L

































=

0 I

−inv(Msys
* )Ksys 0































θ1

θ2

φL

ψ L

θ̇1

θ̇2

φ̇L

ψ̇ L

































+

0

inv(Msys
* ) f































u (2.1.54)

2.2  Six Degree of Freedom Manipulator

The dynamics of a six degree of freedom manipulator are substantially more

complicated than those for the two degree of freedom manipulator shown in the above

section.  However, it is worth noting that much of the nonlinear kinematics of the

manipulator are dependent on the elbow pitch joint  (2.1.48).  
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Shoulder-pitch
 joint

Elbow-pitch
 joint

Shoulder-yaw joint

Accelerometer Location

x

y

z

x'y'

z'

  
θ

Figure 2.2.1 Six Degree of Freedom Manipulator

For example, in Figure 2.2.1 the transfer function which relates the shoulder-pitch joint

to an accelerometer located inboard of the x’, y’, z’ reference frame, is not sensitive to

the shoulder yaw or shoulder-pitch joint angle.  This thesis will thus focus on the

controller sensitivities of the elbow-pitch angle.  In Figure 2.2.1 a schematic of the

RMS system with the placement of the accelerometers located at the end of the second

boom is illustrated.  This sensor location is used in the SRMS example of Chapter five.

2.3  Non-minimum Phase Zeroes and Boundary Conditions

This analysis shows the effect of the base boundary conditions on the poles and zeroes

of the transfer function of the two link model.  The base constraint (or boundary

condition at the shoulder joint) experienced on the SRMS is essentially a fixed
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constraint due to the gearbox ratio of 1842:1.  To model the physics of the SRMS with

the high gearbox ratio, the feedback dynamics of the two link arm flexibility were

prevented mathematically from driving the shoulder joint, while the elbow joint

remained fixed.  This can be accomplished by eliminating those dynamic feedback

terms from the flexible modes which drive the shoulder joint.  Thus the mass matrix of

the two link model is modified as shown below (Juang, 1986).  Note that this

representation results in a non-symmetric mass matrix, and is an accurate representation

for very high gearbox ratios.

Msys,i
* =

J1,i
* 0 0 0

ηLrL
2 J2

* ηLrL
2 J2

* ηLrL
2 M2a,i

*T ηLrL
2 M2c

*T

M1a,i
* + M1a,ii

* ηLrL
2 M2a,i

* Ma,i
* + Ma,ii

* ηLrL
2 Mca,i

*T

ηLrL
2 M2c

* ηLrL
2 M2c

* ηLrL
2 Mca,i

* ηLrL
2 Mc

*





















(2.3.1)

and

Msys,ii
* =

J1,ii
* 0 0 0

ηLrL
2 J12,ii

* 0 ηLrL
2 M2a,ii

*T 0

M1a,iii
* ηLrL

2 M2a,ii
* 1

2
Ma,iii

* + Ma,iii
*T( ) ηLrL

2 Mca,ii
*T

ηLrL
2 M1c,ii

* 0 ηLrL
2 Mca,ii

* 0






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(2.3.2)

The total system mass matrix is given by

Msys
* = Msys,i

* + Msys,ii
* cos θ2( ) (2.3.3)

Notice these mass matrices (2.3.1) and (2.3.2) are similar to those shown in Equations

(2.1.46) and (2.1.47).  However, now all feedback terms to θ1 in the top row of the

mass matrix Msys
*  and to the right of the inertia terms J1,i

*  and J1,ii
*  have been set to zero

to prevent the arm from back driving the joint at θ1.  Thus, as shown in first order
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form, the forward dynamics are retained while preventing backward effects.  The state

space model is shown in (2.3.4) with Msys
*  replaced by Msys

* .
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u (2.3.4)

Rate Command

To mathematically model velocity (or rate) command of the two link model, a servo

loop is inserted into the open loop model as was done on the SRMS (Ravindran,

1982).  

kt

Rate 
Command

Torque 
Command

Tip
Displacement

˙ θ 1
Open Loop

Figure 2.3.1 Control Block Diagram with Rate Command

The servo loop provides the ability to command angular rates as opposed to

commanding torques.  It is not advisable to command torque’s in space based or

terrestrial manipulators due to high angular rates they may induce.  Thus a servo loop is

added to the mathematical model as shown in Figure 2.3.1.  A proportional gain kt  is
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introduced which feeds back to provide sufficient torque to maintain the commanded

velocity as shown in Figure 2.3.2.

Figure 2.3.2 Two Link Model with Rate Command

To examine the effect of the rate command on the open loop poles and zeroes, several

example dynamic responses are shown.  In the following plots, the two link model is

used with θ2  locked at 0°.  The following non-dimensional parameters are used in a

Matlab (Matlab, 1992) simulation of the system modeled in Section 2.2.  These non-

dimensional parameters represent an example problem where both links have the same

mass and stiffness properties.  A very heavy mass at the end of the second link is used

for example purposes only (Table 2.3.1).  The structural damping used is ζ = 0 02. .

Three sets of analysis are shown in the following section.  The first analysis is for the

above model with no base constraint.  The second includes the mathematical model of

the gearbox, in which feedback dynamics are prevented from driving the joint

corresponding to θ1.  The third analysis includes the rate command servo in addition  to
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the gearbox model.  All the transfer functions indicated show the response from the

input command to the shoulder joint and a sensor located at the arm tip.  In this manner

the non-collocation, non-minimum phase system can be explored.  All poles and zeroes

shown in the following tables correspond to the transfer function pole zero form shown

here.

H(s) = C(sI − A)−1 B + D = k
(s − z1)(s − z2 )...(s − zn )
(s − p1)(s − p2 )...(s − pn )

(2.3.5)

To simplify discussion only four system modes are shown.  The four non-zero pole

locations are the lowest frequency modes.  Table 2.3.2 shows the poles and zeroes

with no base constraint.  These poles and zeroes are shown in Figure 2.3.3 in the root

locus with no base constraint.  Notice in this example there are two open loop zeroes.

Table 2.3.1

Non-Dimensional Parameters used in Experiment

η1 = m1

M1
= 0 Mass ratio of link 1; end mass to link 1 mass

η2 = m2

M2
= 200 Mass ratio of link 2; tip mass to link 2 mass

ηL = M2

M1
= 1 Link mass ratio:  mass of link 2 relative to link 1

rL = L2

L1
= 1 Link length ratio:  length of link 2 to link 1

µi = EiIi

MiLi
3







= 18 Non-dimensional stiffness properties of link i
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Figure 2.3.3 Root Locus of Poles and Zeroes - No Base Constraint

When the gearbox model is inserted, Table 2.3.3 indicates that the poles have

significantly changed, while leaving the zeroes unchanged.  The poles have a

considerably higher frequency compared to Table 2.3.2.  Figure 2.3.4 is a diagram of

Table 2.3.2

Poles and Zeroes with No Base Constraint

zi pi

-4.3125e+02 0

4.2503e+02 0

-7.8737e-01+3.4913e+02i -3.2062e+01+9.5380e+02i

-7.8737e-01-3.4913e+02i -3.2062e+01-9.5380e+02i

-6.8055e+01 -6.7239e+00+4.9055e+02i

6.9064e+01 -6.7239e+00-4.9055e+02i

0 -1.8390e+00+1.7813e+02i

0 -1.8390e+00-1.7813e+02i

-1.5754e-01+4.7325e+01i

-1.5754e-01-4.7325e+01i
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the poles and zeroes in the root locus domain.  Notice that the zeroes are left

unchanged.  In Figure 2.3.5 the pulse response from an input command to the shoulder

joint and a sensor located at the arm tip is shown.
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Figure 2.3.4 Root Locus of Poles and Zeroes with Gearbox Model

Table 2.3.3

Poles and Zeroes with Gearbox Model Inserted

zi pi

-4.3125e+02 0

4.2503e+02 -4.7843e+00+5.6088e+02i

-7.8737e-01+3.4913e+02i -4.7843e+00-5.6088e+02i

-7.8737e-01-3.4913e+02i -7.1962e-01+2.2726e+02i

-6.8055e+01 -7.1962e-01-2.2726e+02i

6.9064e+01 -3.8345e-01+7.2709e+01i

0 -3.8345e-01-7.2709e+01i

0 -5.6805e-05+7.9551e-01i

-5.6805e-05-7.9551e-01i
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In Figure 2.3.5, the response is shown for a unit pulse input at the base.  The high

frequency dynamics have been replaced with lower frequency dynamics, corresponding

to the insertion of the gearbox model.  In this case the constraint at the base is

constrained do to the gearbox model versus the pinned condition earlier.  There still

exists a rigid body mode corresponding to the poles at zero.

When the rate servo is inserted, Table 2.3.4 indicates that the poles have significantly

changed, while leaving the zeroes unchanged.  One of the rigid body poles is removed

when compared with the poles and zeroes with the gearbox model inserted.

N
on

 D
im

en
si

on
al

D
is

pl
ac

em
en

t

Seconds

-10

-8

-6

-4

-2

0

2
x10-3

0 5 10 15 20 25

Figure 2.3.5 Pulse Time History with Gearbox Model

These poles and zeroes with the gearbox mode and rate command inserted are shown in

Figure 2.3.6 in the root locus plane.  Notice the zeroes remain unchanged yet again.
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Figure 2.3.6 Root Locus of Poles and Zeroes with Gearbox Model and Rate
Command

Table 2.3.4

Poles and Zeroes with Gearbox Model

and Rate Command Inserted

zi pi

 -4.3125e+02 0

4.2503e+02 -4.7843e+00+5.6088e+02i

-7.8737e-01+3.4913e+02i -4.7843e+00-5.6088e+02i

-7.8737e-01-3.4913e+02i -7.1962e-01+2.2726e+02i

-6.8055e+01 -7.1962e-01-2.2726e+02i

6.9064e+01 -7.1338e-01+7.1338e+01i

0 -7.1338e-01-7.1338e+01i

0 -7.8896e-03+7.8896e-01i

-7.8896e-03-7.8896e-01i

-1.2458e+01
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In Figure 2.3.7 the high frequency dynamics have been replaced with lower frequency

dynamics, corresponding to the insertion of the gearbox model.  The displacement in

the negative direction is a result of a negative unit pulse velocity command.

As shown in the above three examples, the zeroes are left unchanged by the boundary

conditions, while the poles shift.  In the time domain the effects of these base

constraints are shown to lower the frequency of the fundamental mode, and to alter the

steady state behavior of the system.  The time response of Figure 2.3.7 highlights the

typical behavior of non-minimum phase systems.  Notice the response is initially

upward even though the quasi steady state value is negative.  This is not the typical

behavior of minimum phase systems.  These results are shown to gain more

understanding of the mathematical model used to design the control system, and to

demonstrate the insensitivity of the zeroes of the open loop model to the base boundary

conditions.
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Figure 2.3.7 Pulse Time History with Gearbox Model and Rate Command
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2.4  Frequency Dependence on Payload Mass

In developing the two link model, Euler-Bernoulli beam theory was used for which the

following assumptions are implicit (Graf, 1975).  Rotary motion, longitudinal motion,

and shear strain of the beam fibers are negligible; beam material properties and cross

section are symmetric with respect to the neutral bending axis; and structural damping is

small.  A further assumption is that the material properties and cross section do not

depend on x .  The system is described by the Equation (2.4.1):

yiv (x,t) + ρA

EI
˙̇y(x,t) = 0 (2.4.1)

with boundary conditions:

y(0,t) = 0

y' (0,t) = 0

y' ' (L,t) = 0

EIy' ' ' (L,t) = mp ˙̇y(L,t)

(2.4.2)

where ρ ≡  mass density, A ≡  cross-sectional area, E ≡  Young’s Modulus, I ≡  area

moment of inertia.

The solution to the boundary value problem (2.4.1) and (2.4.2) is expressed as an

infinite product which is then truncated to provide a finite order approximation of the

plant with exact transfer function poles and zeroes (Wie, 1981; Spector, 1988, 1989;

and Goodson, 1970)  By applying separation of variables and by taking the Laplace

transform with respect to time, the solution to Equation (2.4.1) has the form:

y(x,t) = q(t)φ(x) (2.4.3)

inserting this into (2.4.1) yields

φ (iv) (x)q(t) + ρA

EI
˙̇q(t)φ(x) = 0 (2.4.4)
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solving yields:

φ(x) = C1 sin(βx) + C2 cos(βx) + C3 sinh(βx) + C4 cosh(βx) (2.4.5)

where

S2 = ±i
ρA

EI
β 2 (2.4.6)

where S  is the transformed variable and i = −1 .  Transforming the boundary

conditions to the β  domain results in:

C2 + C4 = 0 (2.4.7)

C1 + C3 = 0 (2.4.8)

and

C1[sin(βL) + sinh(βL)] + C2[cos(βL) + cosh(βL)] = 0 (2.4.9)

EIβ 3[C1(− cos(βL) − cosh(βL)) + C2 (sin(βL) − sinhβL)] =

ω 2mp[C1(sin(βL) − sinh(βL)) + C2 (cos(βL) − cosh(βL))
(2.4.10)

Solving the boundary value problem of the Wronskian yields the following matrix.

sin(β ) + sinh(β ) cos(β ) + cosh(β )
β M[sinh(β ) − sin(β )] + cos(β ) + cosh(β ) β M[cosh(β ) − cos(β )] + sin(β ) + sinh(β )







= 0
0[ ]

(2.4.11)
where

M =
mp

ρAL , 
and β = β

L
.

Solving for the determinant of Equation (2.4.11) and simplifying yields the following

characteristic equation:

β M sin(β )cosh(β ) −1 − β M sinh(β )cos(β ) − cos(β )cosh(β ) = 0 (2.4.12)

As the payload mass ratio M ⇒ ∞ , the characteristic equation (2.4.12) reduces to that

of the hinged problem as shown in Figure 2.4.1 and is given by (2.4.13).

sin(β )cosh(β ) − sinh(β )cos(β ) = 0 (2.4.13)
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L

m, EI=Const

Figure 2.4.1 Cantilever Hinged Problem

Frequency separation between sequential modes

A characteristic of this structure is that the frequency separation between the first and

second modal frequency for the manipulator model increases as the payload mass is

increased.  Figure 2.4.2 shows the modal frequencies with no payload tip mass

(Meirovitch, 1975).  The frequency separation is larger as the payload mass is

increased.  Table 2.4.1 shows the frequency separation for various payload to arm

mass ratios, M .  

L

m, EI=Const

L

L

Mode 1

Mode 2

L

Mode 3

ω1 =1.8752 EI

mL4

ω2 = 4.6942 EI

mL4

ω3 = 7.8552 EI

mL4

Figure  2.4.2 Theoretical Frequency Separation for Cantilever Free Boundary
Condition
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Table 2.4.1

Frequency Versus Non-Dimensional

Payload Mass Ratio

Non-Dimensional Frequency

M =
mp

ρAL

mode 1

f1

mode 2

f 2

mode 3

f3

0.1 18.82 124.6 350.3

0.316 14.76 112.4 331.7

1 9.89 104.2 321.7

3.16 5.97 100.6 317.9

10 3.44 99.3 316.5

31.6 1.95 98.9 316.1

100 1.10 98.7 315.9

Figure 2.4.3 shows the frequency ratio versus payload mass ratios for various modes.

Each frequency depicted in the graph is divided by the first modal frequency for the

given payload mass ratio 
Mp

M
, where Mp  is the payload mass and M  is the total arm

weight.  For the non-dimensional manipulator as shown in Figure 2.3.2, with no

payload, and θ2=0, the 2nd modal frequency is 6 times the frequency of the 1st mode.

In addition, the 3rd modal frequency is 18 times the frequency of the 1st mode, etc.  If

a payload 100 times the mass of the arm is considered, the 2nd modal frequency is 98

times the frequency of the 1st mode.  The 3rd modal frequency is 316 times the

frequency of the 1st mode, etc.  It is worth noting that for the SRMS, a payload to arm

mass ratio of 100 is considered a small to medium class in terms of payload size.
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Figure 2.4.3 Frequency Ratio Versus Payload Mass Ratios for Various Modes

2.5  Root Locus of Open Loop System as Theta Varies

The root loci of the characteristic equation for the first two modes are shown below

(Table 2.5.1) for theta varying between zero and 90 degrees.  Figure 2.5.1 and 2.5.2

display the roots of the characteristic equation as a function of the elbow joint angle θ2

in the root locus domains for the first and second mode respectively.  In Figure 2.5.1

the first mode poles shift upward and to the left in the root locus domain as theta is

increased, corresponding to the frequency increasing as theta increases.
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Table 2.5.1

Root location for 1st and 2nd Modes as Theta Varies

Root Location

Theta
(Degrees) Mode 1 Mode 2

0 -7.8896e-03Ò7.8896e-01i -7.1338e-01Ò7.1338e+01i

10 -7.9160e-03Ò7.9160e-01i -2.6507e-01Ò2.6507e+01i

20 -7.9957e-03Ò7.9957e-01i -1.4049e-01Ò1.4049e+01i

30 -8.1310e-03Ò8.1310e-01i -9.5490e-02Ò9.5490e+00i

40 -8.3259e-03Ò8.3259e-01i -7.2809e-02Ò7.2809e+00i

50 -8.5858e-03Ò8.5858e-01i -5.9347e-02Ò5.9347e+00i

60 -8.9183e-03Ò8.9183e-01i -5.0585e-02Ò5.0585e+00i

70 -9.3330e-03Ò9.3330e-01i -4.4573e-02Ò4.4573e+00i

80 -9.8410e-03Ò9.8410e-01i -4.0349e-02Ò4.0349e+00i

90 -1.0455e-02Ò1.0455e+00i -3.7411e-02Ò3.7411e+00i
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Figure 2.5.1 First Mode Poles as a Function of Theta
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In Figure 2.5.2 the second mode poles shift downward and to the right in the root locus

domain as theta is increased, corresponding to the frequency decreasing as theta

increases.  This is in contrast to the first mode in which the frequency increased.

However, over the entire range of theta there is considerable frequency separation

between the first and successive modes.
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Figure 2.5.2 Second Mode poles as Function of Theta

2.6  Modal Open Loop Infinity Norm

The cost associated with the first mode versus the residual modes is shown in Figure

2.6.1 as a function of the elbow joint angle θ2 .  Each point on this surface plot is the

infinity norm of the Bode plot for the individual modes as θ2  is varied.  Where

Infinity Norm ≡
< <∞
sup

( )

( )0 ω

ω
ω

H j

u j
(2.6.1)
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The input/output pair is the torque actuator at the hub and the tip displacement sensor

respectively.  This surface plot reflects the fact that the tip motion is largely dominated

by the first mode.  The absolute value on the plot is not as important as the relative

dominance of the first versus the respective modes.  The parameters used for this heavy

payload simulation are shown in Table 2.4.1.

Mode Number

1 2 3 4 5 6 7 8 910 Theta0 10 20 30 40 50 60 70 80 90

Infinity
Norm

Figure 2.6.1 Infinity Norm of Bode Response as a Function of Mode Number and
Theta - Heavy Payload

The exact amplitude ratio of the first mode versus second mode is shown in Figure

2.6.2.  The log plot indicates that for heavy payloads the response is largely dominated

by the first mode.  For example, the infinity norm ratio of the 1st versus the 2nd mode

is 40:1 and the infinity norm ratio of the 1st versus the 3rd mode is 600:1.

100

101

102

1 2 3 4 5 6 7 8 9 10             0          10          20         30          40          50         60         70          80         90
Degrees

Figure 2.6.2 Infinity Norm Ratio of 2nd Versus 1st Mode as a Function of Theta
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For higher order modes the infinity norm ratio is still larger.  Figure 2.6.3 indicates the

infinity norm ratio of 3rd versus 1st mode as a function of theta.

102

103

              0          10          20         30          40          50         60         70          80         90
Degrees

Figure 2.6.3 Infinity Norm Ratio of 3rd Versus 1st Mode as a Function of Theta

For comparison to a zero payload case, Figure 2.6.4 shows the maximum value of the

Bode plot for various values of theta, and mode number for the non-dimensional

parameters shown in Table 2.6.1

When comparing Figure 2.6.4 with 2.6.1, notice that the heavier the payload, the larger

the infinity norm amplitude ratio between the fundamental and the higher modes.  These

figures represent the relative dominance of the successive modes as predicted by the

Table 2.6.1

Non-Dimensional Parameters used in Zero Payload Experiment

η1 = m1

M1
= 0 Mass ratio of link 1; end mass to link 1 mass

η2 = m2

M2
= 0 Mass ratio of link 2; tip mass to link 2 mass

ηL = M2

M1
= 1 Link mass ratio:  mass of link 2 relative to link 1

rL = L2

L1
= 1 Link length ratio:  length of link 2 to link 1

µi = EiIi

MiLi
3







= 18 Non-dimensional stiffness properties of link i
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infinity norm of the Bode response.  Thus the plots are associated with inputs that have

broad spectral energy.  In actual systems where safety monitoring functions are

included, such as slew rate limitations, the input has a higher spectral energy at the low

end of the frequency spectrum.  Thus the open loop response will be further dominated

by the lower frequency modes than those depicted in Figure 2.6.4.  In chapter five the

slew rate limits mandated by the Shuttle Remote Manipulator safety monitoring system

will be discussed in greater detail.

Infinity
Norm

Mode Number

1 2 3 4 5 6 7 8 9 10 Theta0 10 20 30 40 50 60 70 80 90

Figure 2.6.4 Infinity Norm of Bode Response as a Function of Mode Number and
Theta - Zero Tip Mass

2.7  Summary

This chapter has laid the groundwork for the mathematical modeling of the

reconfigurable system.  The non-dimensionalized second order dynamics have been

decomposed into parameter independent and parameter dependent block matrices.  The

equivalent first order state-space form is introduced.  The overall transfer function

sensitivity to the variations in the shoulder yaw, elbow pitch, and wrist roll, yaw and

pitch arm orientations are discussed.  A method is introduced which models the reverse
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dynamics of the gearbox.  The non-minimum phase zeroes are explored in light of the

base boundary conditions.  It is shown that the zeroes do not change when base

boundary conditions are changed, although the poles move considerably.  Light and

heavy payloads have been explored and their effect on the modal frequencies are

analyzed.  For heavier payloads it is shown that the frequency separation between

successive modal frequencies increases.  As the payload approaches infinity it is shown

that the cantilever free problem approaches the cantilever fixed problem.  The frequency

separation as a function of theta is examined.  It is shown that the fundamental mode

poles shift upward in the root locus domain as theta is increased, corresponding to the

frequency increasing as theta increases.  This is in contrast to the second mode in which

the frequency decreases.  However, over the entire range of theta, there is considerable

frequency separation between the first and successive modes.  The open loop infinity

norm of the Bode response is examined in modal form as a function of mode, arm

orientation, and payload mass, to understand the relative dominance in the time and

frequency domain of the successive modes.  It is shown that the response is largely

dominated by the first or fundamental mode.

These observations will be used to aid in the development of the system identification

and controller design methodologies discussed in the following chapters.
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CHAPTER 3

SYSTEM IDENTIFICATION

In the past decade many system identification techniques have been developed to

identify state-space models of electro/mechanical space structures for modal analysis or

controller design.  Identifying a mathematical model from data eliminates the need to

develop accurate models of operational safety functions, sensor, and actuator transfer

functions of the system under control.  As the system complexity increases, accurate

analytical models increase the time to develop a controller.  Large analytical model

based controllers require a large order compensator and may not be as accurate as

identified reduced order mathematical models.  Before 1970 a great majority of modal

tests were performed by tuned-dwell techniques (Stroud, 1987).  In modal analysis the

parameters include frequencies, damping and mode shapes.  For control system design,

accurate actuator influence coefficients are required as well.  System identification in

most techniques is accomplished using MIMO time histories to create sampled pulse

response histories.  The usual practice uses the Fast Fourier Transforms (FFT)s of the

input and output histories to compute the Frequency Response Functions (FRF)s, and

then use the Inverse Discrete Fourier Transform (IDFT) to compute the sampled pulse

response histories.  Another approach is to solve for the Markov parameters directly in

the time domain.  This approach obviates the need to compute and store FFTs, FRFs,

and IDFTs, although it is necessary to invert an input matrix which becomes large for

lightly damped systems.  An approach by Juang (1993), uses an asymptotically stable

observer to form a stable discrete state-space model, rather than identifying the system
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Markov parameters, which may exhibit very slow decay.  The purpose of introducing

an observer is to compress the data and improve system identification results.

In this chapter the Markov parameters are introduced and their relationship to the state

space model is discussed.  In practice, if the system is lightly damped, a large number

of system Markov parameters is needed.  The observer is introduced in the state space

model and it is shown to decrease the number of estimated parameters to a unique set of

observer Markov parameters.  The relationship of the observer state space models on

linear and recurrent networks is shown.  The identification of time varying systems is

presented as the observer Markov parameters are identified for various “set points” of

the time varying plant shown in Figure 3.1.  Finally a simply connected observer is

constructed using the observer Markov parameters in an example problem.  Various

size observers were identified from the time varying plant and results are discussed.

The observer Markov parameters are then used to construct time varying observer

canonical state space models.  In the following theoretical and numerical experimental

results, to simplify the mathematics, the angle θ  (without the subscript) will refer to the

elbow joint angle θ2 .

 
θ1

w2 m1

θ2  
w1

  

 
m2

Figure 3.1 Two Link Model used for System Identification
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3.1  Markov Parameters and the State Space Model

This section describes the relationship between the feed forward linear network and the

state space model, which is a common form of representing linear systems (Phan,

1993).  The discrete time state space model of an N-th order, m-input, q-output system

is a set of N simultaneous first order difference equations of the form

x(k + 1) = Ax(k) + Bu(k)

y(k) = Cx(k) + Du(k) (3.1.1)

where the dimensions of A, B, C, and D  are n × n, n × m, q × n , and q × m,

respectively.  Solving for the output y(k) in terms of the previous inputs yields

y(k) = hi
i=0

k

∑ u(k − i) (3.1.2)

where the parameters

h0 = D, hk = CAk−1B, k = 1,2,3,... (3.1.3)

are the Markov parameters  (Phan, 1992) of the system described by Equation (3.1.1),

which are also the system pulse response samples.  The Markov parameters are

expressed in terms of the system discrete state space matrices A, B, C, and D .

For an asymptotically stable system, the pulse response can be neglected after a finite

number of time steps, say ps .  The input-output description in Equation (3.1.2) can be

approximated by a finite number of Markov parameters

  y(k) ≈ h0u(k) + h1u(k −1) + h2u(k − 2)+L+hpu(k − ps )
 

(3.1.4)

where ps  is sufficiently large so that CAk B ≈ 0, k ≥ ps .  Note that the elements of the

Markov parameters are simply the weights of a single-layer linear network, where
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inputs to the network include both current and past values of the input signal and z −1

denotes the time delay operator (see Figure 3.1.1).

u(k)

u(k-1)

u(k-2)
.
.
.
.
u(k-p)

z−1

z−1

z−1

y(k)
h0

h1

h2

hps

Figure 3.1.1 Markov Parameters as Weights in a Linear Network

In practice, if the system is lightly damped, a large number of system Markov

parameters is needed to maintain (3.1.4) as a valid approximation.  The fact that a large

number of system Markov parameters is required to represent a lightly damped system

of the form in Equation (3.1.4) is a major weakness of the representation.

3.2  Observer Markov Parameters

To reduce the number of Markov parameters needed to adequately model the system, an

observer model is introduced.  Adding and subtracting the term Ky(k) to the right hand

side of the state equation in Equation (3.1.1) yields

x(k + 1) = Ax(k) + Bu(k) + Ky(k) − Ky(k)

= (A + KC)x(k) + (B + KD)u(k) − Ky(k) (3.2.1)

If K  is a matrix so that A + KC  is deadbeat of order p, i.e.,
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(A + KC)k ≡ 0, k ≥ p (3.2.2)

then for k ≥ p the output y(k) can be expressed as a finite difference equation

  y(k) = α1y(k −1)+L+α py(k − p) + β0u(k) + β1u(k −1)+L+β pu(k − p)
 

(3.2.3)

where

αk = −C(A + KC)k−1K

βk = C(A + KC)k−1(B + KD), β0 = h0 = D
(3.2.4)

The matrix K  in the above development can be interpreted as an observer gain.  The

system considered in Equation (3.1.4) has an observer of the form (Phan, 1992)

x̂(k + 1) = Ax̂(k) + Bu(k) − K y(k) − ŷ(k)[ ]
ŷ(k) = Cx̂(k) + Du(k)

(3.2.5)

Defining the state estimation error e(k) = x(k) − x̂(k), the equation that governs e(k) is

e(k + 1) = (A + KC)e(k) (3.2.6)

For an observable system, the matrix K  exists such that the eigenvalues of A + KC

may be placed in any desired symmetric configuration.  If the matrix K  is such that

A + KC  is asymptotically stable, then the estimated state x̂(k)  tends to the true state

x(k)  as k  tends to infinity for any initial difference between the assumed observer state

and the actual system state.  The matrix K  can therefore be interpreted as an observer

gain.  The parameters defined as

Y (k) = C(A + KC)k−1 B + KD, −K[ ]
= βk , αk[ ] (3.2.7)

are the Markov parameters of an observer system, hence they are referred to as

observer Markov parameters (Juang, 1991).  
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Notice that in Equation (3.2.3), the output y(k) is the open loop response of the

system, yet the coefficients αk , βk  are related to an observer gain.  Consider the

special case where K  is a deadbeat observer gain such that all eigenvalues of A + KC

are zero, the observer Markov parameters will become identically zero after a finite

number of terms.  For lightly damped structures this means that the system can be

described by a reduced number of observer Markov parameters Y (k) , instead of an

otherwise large number of the usual system Markov parameters hk .  For this reason,

the observer Markov parameters are important in linear system identification.

Equation (3.2.3) can be represented by a single layer of a recurrent network (Phan,

1993) in Figure 3.2.1.

u(k)

u(k-1)

u(k-2)
.
.
.
.
u(k-p)

z−1

z−1

z−1

z−1

z−1

β0

β1

β2

β p

α1

α2

α p

y(k)

y(k-1)

y(k-2)
.
.
.
.
y(k-ps)

Figure 3.2.1 A Single Layer of a Recurrent Network

The system Markov parameters or the feed forward network weights are related to the

recurrent network weights by

hk = βk + α ihk − i
i=1

k

∑ (3.2.8)
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Where αk ≡ 0, βk ≡ 0  for k > p.  To describe a system of order N , the number of

observer Markov parameters p must be such that qp N≥ , where q is the number of

outputs.  The implication of this result to the network configuration is that a recurrent

network requires fewer number of parameters or weights than are required by an

equivalent feed forward network.  Furthermore, it is not possible to represent a

marginally stable or unstable system by a feed forward network.  However, it is

possible to represent such a system by a recurrent network.

3.3  Identification of Linear Systems

The problem of linear system identification using linear networks is reduced to finding

these network weights from input-output data.  The computation may be done off-line

or on-line.  In off-line computation the input-output data is already available and a

network representing the system is to be determined.  On-line computation refers to the

case where the network weights are continually updated as data is made available.

The weights of the network represented by Equation (3.2.3) can be computed using a

feed forward model (Phan, 1993).  For linear systems it is sufficient to use a one layer

network having as many nodes as the number of outputs.  This is a simple linear

parameter estimation problem.  The off-line computation is shown first, followed by an

equivalent on-line computation.  Equation (3.2.3) can be written as

y(k) = βi , αi[ ]
i=1

p

∑
u(k − i)

y(k − i)






+ β0u(k) (3.3.1)

where network weight parameters αk , βk  are defined by Equation (3.2.4).  Writing

Equation (3.3.1) in matrix form for a set of input-output data N+1 samples long yields:
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y = YV (3.3.2)

where

  y = y(0) y(1) L y(p) y(p + 1) L y(N)[ ] (3.3.3)

and

  
Y = β0, β1, α1, β2, α2, K β p , α p ,[ ] (3.3.4)

and

  

V =

u(0) u(1) L u(p) u(p + 1) L u(N)
u(0)

y(0)






L
u(p −1)

y(p −1)






u(p)

y(p)






L
u(N −1)

y(N −1)






O M M M M
u(0)

y(0)






u(1)

y(1)






L
u(N − p)

y(N − p)




























(3.3.5)

The network weight matrices are estimated using the equation

Ŷ = yV+ (3.3.6)

or

Ŷ = yVT VVT[ ]−1
(3.3.7)

where (.)+  denotes the pseudo-inverse of the quantity in the parentheses.  And

  
Ŷ = β̂0, β̂1, α̂1, β̂2, α̂2, K β̂ p , α̂ p[ ] (3.3.8)

Note that the least squares solution Ŷ  is the same as the true Markov parameters Y  in

(3.3.4) only when there is no noise present and (3.3.5) is of sufficient rank.  The least

squares solution of Equation (3.3.7) can be obtained by an on-line parameter estimation

scheme (Phan, 1993).  First write each column in V  as

  V = Γ(0), Γ(1), Γ(2), L[ ] (3.3.9)
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so that at each time step k, Equation (3.3.2) can be written as

y(k) = YΓ(k) (3.3.10)

The recursive least ,squares equation for the network weights is simply,

Ŷ(k) = Ŷ(k −1) + y(k) − Ŷ(k −1)Γ(k)[ ] Γ(k)T R(k −1)

1 + Γ(k)T R(k −1)Γ(k)









(3.3.11)

where

R(k) = R(k −1) − R(k −1)Γ(k)Γ(k)T R(k −1)

1 + Γ(k)T R(k −1)Γ(k)
(3.3.12)

with an arbitrary initial guess Ŷ(0) , and R(0) is any arbitrary positive definite matrix.

Other recursive parameter estimation algorithms may be used to replace the standard

least squares at this step, e.g., the projection or instrumental variable methods

(Goodwin, 1984) and (Ljung, 1983).

3.4  Identification of Time Varying Systems

The observer Markov parameters are identified using (3.3.7) which accurately model

the mathematics at each “set point” of the system.  In this way, linear identification

techniques can be used to develop the time varying model.  Thus the observer Markov

parameters will depend on the kinematic elbow pitch angle.  The time varying system

can be modeled at each set point using the single layer time varying recurrent network

shown in Figure 3.4.1.  

The objective, then is to use data from several arm orientations to derive estimates of

the observer Markov parameters as a function of the elbow joint angle.
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Ŷ θ( ) = β̂0 θ( ), β̂1 θ( ), α̂1 θ( ), β̂2 θ( ), α̂2 θ( ), K β̂ p θ( ), α̂ p θ( )[ ] (3.4.1)

using the batch method

Ŷ θ( ) = y θ( )V θ( )T V θ( )V θ( )T[ ]−1

(3.4.2)

where

  y θ( ) = y(0) y(1) L y(p) y(p + 1) L y(N)[ ] (3.4.3)

and

  

V θ( ) =

u(0) u(1) L u(p) u(p + 1) L u(N)
u(0)

y(0)






L
u(p −1)

y(p −1)






u(p)

y(p)






L
u(N −1)

y(N −1)






O M M M M
u(0)

y(0)






u(1)

y(1)






L
u(N − p)

y(N − p)




























(3.4.4)

The vector y θ( ) and matrix V θ( )  consist of data gathered from system identification

experiments as outlined in the following section.
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.
.
y(k-p)

θ( )
β1

θ( )

θ( )

θ( )

βp

θ( )

α2 θ( )

αp θ( )

Figure 3.4.1 A Single Layer Time Varying Recurrent Network
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3.5  Numerical Experimental Results

In this section the batch method (3.4.2) is used to identify the observer Markov

parameters of the system shown in Table 3.5.1 for ten different arm orientations.  Ten

arm orientations were chosen here to show that the third order polynomial, or spline

function approximates the observer Markov parameters.  The observer Markov

parameters will be put into the observer canonical form for control system

development.  Data gathering numerical experiments for the ten arm orientations were

used to derive input and output data for use in the batch method.  A broad input

spectrum consisting of a random dither was applied.  For the following numerical

results, these non-dimensional parameters were used (Table 3.5.1).

The first results in Table 3.5.2 show the identified time varying system for p = 2

corresponding to a system of order 2.  As was shown in Chapter 2, the response is

largely dominated by the first system mode (see Figure 2.6.1).

Table 3.5.1

Non-Dimensional Parameters used in Numerical Experiment

η1 = m1

M1
= 0 Mass ratio of link 1; end mass to link 1 mass

η2 = m2

M2
= 200 Mass ratio of link 2; tip mass to link 2 mass

ηL = M2

M1
= 1 Link mass ratio:  mass of link 2 relative to link 1

rL = L2

L1
= 1 Link length ratio:  length of link 2 to link 1

µi = EiIi

MiLi
3







= 18 Non-dimensional stiffness properties of link i
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Using the batch method the observer Markov parameters were identified. Table 3.5.2

shows the identified observer for p = 2 .

Ŷ θ( ) = β̂0 θ( ) β̂1 θ( ) α̂1 θ( ) β̂2 θ( ) α̂2 θ( )[ ] (3.5.1)

Table 3.5.2

Identified Observer Markov Parameters - p = 2

Theta
(Degrees)

β̂0 θ( ) β̂1 θ( ) α̂1 θ( ) β̂2 θ( ) α̂2 θ( )

0 -3.7379e-16 2.7522e-04 1.7132 1.2007e-04 -0.9521

10 -1.9967e-16 2.7676e-04 1.7116 1.2158e-04 -0.9522

20 3.4113e-16 2.8147e-04 1.7069 1.2620e-04 -0.9524

30 1.1819e-16 2.8961e-04 1.6987 1.3422e-04 -0.9528

40 -1.0406e-17 3.0163e-04 1.6866 1.4620e-04 -0.9533

50 9.7203e-17 3.1826e-04 1.6700 1.6297e-04 -0.9540

60 2.2409e-16 3.4051e-04 1.6480 1.8579e-04 -0.9551

70 -2.2244e-16 3.6978e-04 1.6191 2.1651e-04 -0.9564

80 -9.6469e-17 4.0792e-04 1.5816 2.5772e-04 -0.9582

90 -4.4990e-16 4.5712e-04 1.5329 3.1299e-04 -0.9607

In Figure 3.5.1 - 3.5.4 the observer elements shown in Table 3.5.2 are plotted and a

spline function approximation is fit to the data as θ2  is varied from 0 degrees to 90

degrees.  Note the first column is the D matrix which should be zero, since there is no

feed through term in the system.   In all cases, except for the β̂0 θ( )  term, which is

zero, a third order polynomial fit the data exactly.  The third order approximation,

requires four constants for each polynomial.  Thus, these four constants can be

identified using four system identification experiments.
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Figure 3.5.1 Identified Polynomial β̂1 θ( ) as Function of Theta
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Figure 3.5.2 Identified Polynomial α̂1 θ( ) as Function of Theta
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Figure 3.5.3 Identified Polynomial β̂2 θ( )
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Figure 3.5.4 Identified Polynomial α̂2 θ( )

The observer Markov parameters reduced the complex mathematical model to a simply

connected spline function.  This has not been previously reported in the literature.  This

observation will be used later to design controllers for this system.  The observer

Markov parameters are the key to reducing the highly heterogeneous parameters in
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observer based models to one simply connected observer.  Understanding how the

essential kernel of the mathematical problem is changing with a measurable state, such

as the elbow joint angle, is fundamental to designing low order high performance time

varying controllers.  

In Table 3.5.3 the results of the identified Markov parameters is shown for p = 4

corresponding to a system of order 4.  The purpose of this experiment is to identify an

appropriate curve fit for the higher order system.  Using the batch method, the observer

Markov parameters were identified.

Ŷ θ( ) = β̂0 θ( ) β̂1 θ( ) α̂1 θ( ) β̂2 θ( ) α̂2 θ( ) β̂3 θ( ) α̂3 θ( ) β̂4 θ( ) α̂4 θ( )[ ]
(3.5.2)

Notice that after about 30 degrees (for p=4) there is not much change in the observer

Markov parameters.  The first Markov parameter is essentially zero, and no attempt is

made to fit the data to the exponential function.  However, the rest of the Markov

parameters are approximated by the exponential function and are shown in Figures

3.5.5-12.  In each graph the identified Markov parameters are shown by a “+” and the

exponential function is represented by an “x”.  Each exponential function curve fit is of

the form:

f (θ ) = C1 + C2e

θ
C3

(3.5.3)

The curve fit for p = 4  is not as accurate as for p = 2 .  Since the canonical forms are

numerically sensitive to the Markov parameters, the exponential curve fit is not as

accurate as the identified Markov parameters.  The eigenvalues and eigenvectors

associated with the observer Markov parameters are found to be very sensitive to the

exponential function.  When controlling the higher order dynamics, it was found that a

higher order curve fit is required to more accurately fit the data.  However, if an

accurate curve fit function is not available one can simply use the identified parameters
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Table 3.5.3

Identified Observer Markov Parameters - p = 4

Theta
(Degrees)

β̂0 θ( ) β̂1 θ( ) α̂1 θ( ) β̂2 θ( ) α̂2 θ( )

0 2.0861e-15 7.1658e-05 1.1835 -3.0718e-03 -.32979

10 -1.4219e-13 1.1920e-03 3.5036 -4.0705e-03 -4.9931

20 -3.8531e-13 1.3309e-03 3.8531 -4.1363e-03 -5.6984

30 8.8561e-13 1.3609e-03 3.9297 -4.1504e-03 -5.8539

40 2.8695e-12 1.3719e-03 3.9577 -4.1560e-03 -5.9112

50 -1.2457e-12 1.3771e-03 3.9710 -4.1589e-03 -5.9384

60 -3.0983e-12 1.3800e-03 3.9782 -4.1605e-03 -5.9533

70 1.9590e-13 1.3818e-03 3.9825 -4.1615e-03 -5.9622

80 4.6381e-12 1.3830e-03 3.9852 -4.1621e-03 -5.9678

90 -2.3083e-11 1.3838e-03 3.9869 -4.1625e-03 -5.9713

Table  3.5.3 Continued

Identified Observer Markov Parameters - p = 4

Theta
(Degrees)

β̂3 θ( ) α̂3 θ( ) β̂4 θ( ) α̂4 θ( )

0 3.0900e-03 1.1055 -8.7649e-05 -9.6040e-01

10 4.0734e-03 3.4747 -1.1944e-03 -9.8547e-01

20 4.1388e-03 3.8374 -1.3333e-03 -9.9211e-01

30 4.1530e-03 3.9187 -1.3634e-03 -9.9450e-01

40 4.1587e-03 3.9491 -1.3745e-03 -9.9569e-01

50 4.1615e-03 3.9638 -1.3798e-03 -9.9640e-01

60 4.1631e-03 3.9719 -1.3826e-03 -9.9685e-01

70 4.1640e-03 3.9768 -1.3843e-03 -9.9715e-01

80 4.1644e-03 3.9799 -1.3853e-03 -9.9735e-01

90 4.1645e-03 3.9818 -1.3859e-03 -9.9748e-01
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in a gain scheduled controller.  Perhaps if more data were used and a higher order curve

fit yielded more accurate results, a function could be used to represent this nonlinear

system.
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Figure 3.5.8 Identified Exponential Function α̂2 θ( )- p = 4
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3.6  Observer Canonical State Space Model

In this section the observer Markov parameters are used to derive a discrete observer

canonical state space model.  There is a direct way of determining the system matrices

A θ( ), B θ( ), C,  and D θ( ) without first computing the system Markov parameters.

In this similarity transformation the time varying state space model is derived quickly

for control system design.  Note that there is no need for induction (3.2.8), which

unnecessarily increases control design development time.  Using the state space model,

the optimal regulator is then designed in the following chapter.

The finite difference equation for y(k) is

  

y(k) = α1(θ )y(k −1) + α2(θ )y(k − 2)+L

L+α p(θ )y(k − p) + β0(θ )u(k) + β1(θ )u(k −1)+L+β p(θ )u(k − p) (3.6.1)

Choose the state variables as

  

xp(k) = y(k) − β0(θ )u(k)

xp−1(k) = y(k + 1) − β0(θ )u(k + 1)

−α1(θ )y(k) − β1(θ )u(k)

xp−2(k) = y(k + 2) − β0(θ )u(k + 2)

−α1(θ )y(k + 1) − β1(θ )u(k + 1)

−α2(θ )y(k + 1) − β2(θ )u(k)

M

(3.6.2)

  

x1(k) = y(k + p −1) − β0(θ )u(k + p −1)

−α1(θ )y(k + p − 2) − β1(θ )u(k + p − 2)

−α2(θ )y(k + p − 3) − β2(θ )u(k + p − 3)

M

−α p−1(θ )y(k) − β p−1(θ )u(k)

This set of equations yields
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y(k) = xp(k) + β0(θ )u(k)

xp−1(k) = x(k + 1) − α1(θ )y(k) − β1(θ )u(k)

xp−2(k) = xp−1(k + 1) − α2(θ )y(k) − β2(θ )u(k)

M

x1(k) = x2(k + 1) − α p−1(θ )y(k) − β p−1(θ )u(k)

x1(k + 1) = α p(θ )y(k) + β p−1(θ )u(k)

(3.6.3)

Equation (3.6.3) can be arranged in matrix form as

x(k + 1) = A(θ )x(k) + B(θ )u(k)

y(k) = Cx(k) + D(θ )u(k) (3.6.4)

where

  

x(k) =

x1(k)

x2(k)

x3(k)

M

xp(k)























(3.6.5)

  

A(θ ) =

0 0 0 0 α p(θ )

1 0 0 0 α p−1(θ )

0 1 0 0 α p−2(θ )

M M M O M

0 0 0 1 α1(θ )























(3.6.6)

  

B(θ ) =

β p (θ ) − α p(θ )β0 (θ )

β p−1(θ ) − α p−1(θ )β0 (θ )

β p−2 (θ ) − α p−2 (θ )β0 (θ )

M

β1(θ ) − α1(θ )β0 (θ )























(3.6.7)

C = 0 0 0 ... 1[ ] (3.6.8)

D(θ ) = β0 (θ ) (3.6.9)
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When using a deadbeat observer it is interesting to see the relationship between the

observer gain and the Markov parameters.  For example, consider the observer form

above for a 2nd order system.  The eigenvalues of the estimator dynamics are zero for a

deadbeat observer, thus,

−λI + A(θ ) + K θ( )C[ ]2 = λ2 = 0 (3.6.10)

or

−
λ 0

0 λ






 +

0 α2 θ( )
1 α1 θ( )









 +

K1 θ( )
K2 θ( )









 0 1[ ]









2

= 0
(3.6.11)

Solving for the determinant gives

−λ + α2 θ( ) + K1 θ( ) α2 θ( ) + K1 θ( )( ) α1 θ( ) + K2 θ( )( )
α1 θ( ) + K2 θ( ) −λ + α2 θ( ) + K2 θ( ) + α1

2 θ( ) + 2α1 θ( )K2 θ( ) + K2
2 θ( )











= λ2 − 2λα2 θ( ) − 2λK1 θ( ) − λα1
2 θ( ) − 2λα1 θ( )K2 θ( ) − λK2

2 θ( )
+ α2

2 θ( ) − 2α2 θ( )K1 θ( ) + K1
2 θ( ) = 0

(3.6.12)

Factoring the expression (3.6.12) gives

λ2 + −2α2 θ( ) − 2α1 θ( )K2 θ( ) − K2
2 θ( ) − 2K1 θ( ) − α1

2 θ( )( )λ
+ α2

2 θ( ) + 2α2 θ( )K1 θ( ) + K1
2 θ( )( ) = 0

(3.6.13)

Setting Equation (3.6.13) to zero yields the two following equations:

−2α2 θ( ) − 2α1 θ( )K2 θ( ) − K2
2 θ( ) − 2K1 θ( ) − α1

2 θ( ) = 0 (3.6.14)

and

α2
2 θ( ) + 2α2 θ( )K1 θ( ) + K1

2 θ( ) = 0 (3.6.15)

Solving (3.6.15) for K1 θ( )  yields

K1 θ( ) = −α2 θ( ) (3.6.16)

Inserting (3.6.16) into (3.6.14) and solving yields

K2 θ( ) = −α1 θ( ) (3.6.17)
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The significance of (3.6.16) and (3.6.17) is that the estimator gains are identified

directly from the data.  This fact will be used later during the control system design in

Chapter 4.

3.7  Summary

This chapter presents the basic concepts of the time varying network as related to the

problem of modeling a time varying system.  Two basic forms of the network, the feed

forward and the recurrent network, are discussed.  Emphasis is placed on the

interpretation of the time varying networks in terms of time varying state space

systems.  The relationship between the feed forward time varying network and the time

varying observer model is explained.

The main contribution of this chapter is the fact that the performance or fundamental

mode observer Markov parameters, which are unique, satisfy a third order

approximation, or spline function as a function of the elbow joint angle ( θ2 ) when

p = 2 .  This has not been previously reported in the literature.  The third order

approximation, or spline function, requires four constants for each polynomial.  These

four constants can be identified using four system identification experiments.  Thus, if

an accurate physical model is not available, identification can be accomplished for the

optimal controller via the observer Markov parameters, using data gathering

experiments of four arm orientations.  This observation will be used later to design

controllers for this system.  
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In addition, it was observed that when the size of the observer was increased, the

Markov parameter fit an exponential function of the elbow joint angle ( θ2 ).  However,

the eigenvalues and eigenvectors associated with the observer Markov parameters were

found to be very sensitive to the exponential function.  There may be other more

accurate high order functions which would yield more accurate eigenvalues and

eigenvectors.  In conclusion, when controlling the fundamental mode, the spline

function approximation is an exact approximation of the fundamental dynamics.  The

higher modes can still be controlled, although a higher order curve fit is required.  If an

accurate curve fit is not attainable a standard look up table in a gain scheduled controller

could be assembled using the identified Markov parameters.  

There is a direct way of determining the system matrices A θ( ), B θ( ), C,  and D θ( )

without first computing the system Markov parameters by using the observer canonical

state space model form.  In this similarity transformation, the time varying state space

model is derived quickly for control system design.  Note that there is no need for

induction which unnecessarily increases control design development time.
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CHAPTER 4

COMPENSATOR DESIGN

The identification results of Chapter 3 will be used in this chapter to design the

compensator.  This chapter is organized as follows.  First, two characteristics of

reconfigurable structures are used to develop the controller implementation strategy.

The two characteristics shown in Chapter 2 are: There is an attenuation of the infinity

norm of the amplitude of the higher frequency modes in the response; and there is a

considerable frequency separation between consecutive modes for the cantilevered two

link manipulator which represents the fundamental dynamics of the system.  The

overall controller implementation strategy is introduced.  The overall strategy is to

design the compensator for performance and then adjust for stability.  The compensator

design section describes four different types of compensator designs.  The first section

derives a fixed gain dynamic compensator.  This section provides insight of the stability

of the compensator when large variations of the plant exist.  The second section derives

the equations necessary for a robust fixed compensator to a time varying plant.  The

third section derives the equations necessary to obtain an optimal gain scheduled

compensator where the dynamics matrix remains fixed and the output gain matrix is

allowed to vary.  Also in this section an adaptive frequency domain compensator is

described which requires no a-priori knowledge of the changing plant dynamics.  The

fourth section develops a Spline Varying Optimal (SVO) Controller in which a time

varying observer/controller is derived.  The SVO controller developed in this chapter is

the first  simply connected time varying compensator shown in the literature.  The SVO

controller includes elements whose parameters change in time.  The elements of the
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dynamic matrices change according to a polynomial which fits the linear quadratic

regulator optimal gain designed at each arm configuration.  In this way minimal on

board computing is required.  Following the theoretical development, an example

problem is introduced and the performance of each controller is compared.  Each

controller design is evaluated using a consistent cost function. .  With the SVO

controller there is an improvement of 20:1 over the open loop manipulator dynamics

along the range of motion.  Finally, the stability of the SVO compensator is examined

by evaluating the minimum singular value of the return difference matrix.  In the

development that follows, the angle θ  refers to the elbow pitch joint angle.

4.1  Controller Implementation Strategy

One feature of the implementation of the compensator is important to discuss prior to

investigating the stability of the closed loop system.  The fundamental assumption is the

system dynamics do not change while the compensator is operational.  This is an

important assumption since there presently are no theorems to address the stability

issues associated with allowing the implementation of the SVO during an arm

maneuver.  The SVO controller will reduce the tip vibratory response after the operator

has maneuvered the arm.  Since the joints on the reconfigurable structure have gearbox

elements, the flexible energy of the structure does not back drive the joints, as

described in section 2.3.  In the proposed controller the shoulder joint of the

manipulator is the most effective actuator to improve the damping level of the first

mode.  Thus the elbow joint will remain fixed and the shoulder actuator will remain

active after the operator finishes the maneuver.
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4.2  Fixed Optimal Compensator

One approach to improving the performance of the manipulator is to design a

compensator for a linearized state space model about a nominal arm orientation, and

then see how well the compensator performs while the kinematics are allowed to vary.

Although this is not a recommended approach, it does provide some useful insights and

answers some basic questions, such as “Are the dynamics changing significantly

enough to warrant a more sophisticated time varying or robust controller?”  The

approach taken in this section is to design one fixed controller which is “optimized”

about a nominal arm orientation.  A heuristic method is applied to “identify” this

nominal model.  The nominal model is identified by the following procedure:  

(1) Design an optimal controller for a “set point” or arm orientation.

(2) Evaluate the performance of this controller as the open loop system

dynamics are varied by using an additive cost function (described later).

(3) Design an optimal controller for successive arm orientations and repeat step

two until all “set point” controllers have been evaluated.

In this manner the controller that has the lowest additive cost function, and hence the

nominal arm orientation is “identified.”  The optimal fixed compensator designed about

the nominal arm orientation will use standard observer based state feedback, where

assumptions are made concerning the process and measurement noise covariance’s.

Since the controller is operating over a dynamically changing system, these

assumptions are at best dubious.  However, as stated earlier, this is an exercise to

examine how well one controller could perform, and whether more sophisticated

controllers are warranted.  In Section 4.3, a more rigorous approach is applied to

ensure stability for the closed loop time varying system.  In either case, since the
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observer is meaningless for the time varying system, the controller state is labeled z , as

opposed to the state estimate x̂ , and the controller will be referred to as a dynamic

compensator, as opposed to the traditional state feedback controller.

The time varying plant model as outlined in Chapter 2 is given by,

ẋ = A θi( )x + B θi( )u + Gw

y = C θi( )x + D θi( )u + v
(4.2.1)

with process noise and measurement noise covariance’s:

E w{ } = E v{ } = 0, E w ′w{ } = Qw , E v ′v{ } = Rv , E w ′v{ } = 0

Where x  is the state, A θi( ) the dynamic matrix at θi , B θi( ) the control influence

matrix, C θi( ) is the system output matrix, D θi( ) the direct transmission matrix, and y

is the plant output.  Using a fixed dynamic compensator of the form:

ż = Aiz + Biu + Ki[y − ŷ]

ŷ = Ciz + Diu
(4.2.2)

where z  is the controller state, and Ki  is the steady state Kalman filter gain solved for a

nominal arm configuration described below.  Substituting yields:

ż = (Ai − KiCi )z + (Bi − KiDi )u + Kiy (4.2.3)

Using a state feedback gain Cc , the control input is given by:

u = Ccz (4.2.4)

To minimize the Linear Quadratic Regulator (LQR) cost function:

J = [yTQy + uT Ru]dt
0

∞

∫ (4.2.5)

The control gain matrix Cc   is given by

Cc = −R−1Bi
T P (4.2.6)
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The matrix P = PT ≥ 0   is computed from the solution of the following algebraic

Riccati equation:

Ai
T P + PAi − PBiR

−1Bi
T P + Q = 0 (4.2.7)

Inserting (4.2.4) into (4.2.2) yields:

ż = (Ai − KiCi + BiCc − KiDiCc )z + Kiy (4.2.8)

Substituting

Ac = Ai − KiCi + BiCc − KiDiCc

Bc = Ki
(4.2.9)

into (4.2.8) yields the fixed compensator equations:

ż = Acz + Bcy

u = Ccz
(4.2.10)

Thus, the fixed dynamic compensator is given by the following transfer function:

Gc(s) = Cc sI − Ac( )−1
Bc + Dc (4.2.11)

A control block diagram of the fixed optimal compensator is shown in Figure 4.2.1.

  +
y

  

ue u1

u2

 Cc

x ̇ = A θ( ) x + B θ( ) u

y = C θ( ) x + D θ( ) u

˙ z = Ac z+ Bc y

Figure 4.2.1 Fixed Dynamic Compensator

The plant dynamic equations for the time varying system is ue = 0, and u = u1 = u2:

ẋ = A(θi )x + B(θi )u

y = C(θi )x + D(θi )u
(4.2.12)
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The state equations for zero exogenous inputs are:

ẋ = A(θi )x + B(θi )Ccz

ż = (AcC(θi ) + BcD(θi )Cc )z + BcC(θi )x

y = C(θi )x + D(θi )u

= C(θi )x + D(θi )Ccz

(4.2.13)

These equations (4.2.13) written in block matrix form are:

ẋ

ż






=
A(θi ) B(θi )Cc

BcC(θi ) Ac + BcD(θi )Cc







x

z






y

u






=
C(θi ) D(θi )Cc

0 Cc







x

z






(4.2.14)

The Linear Quadratic Regulator (LQR) cost function is given by

J(θi ) = [yTQy + uT Ru]dt
0

∞

∫ (4.2.15)

inserting

uT = zTCc
T

yT = xTC(θi )
T + zTCc

T D(θi )
T (4.2.16)

into (4.2.15) yields

J(θi ) =
xTC(θi )

T + zTCc
T D(θi )

T{ }Q C(θi )x + D(θi )Ccz{ }
+zTCc

T RCcz












dt

0

∞

∫ (4.2.16)

rewriting (4.2.16)

J(θi ) =

xTC(θi )
T QC(θi )x + xTC(θi )

T QD(θi )Ccz

+zTCc
T D(θi )

T QC(θi )x + zTCc
T D(θi )

T QD(θi )Ccz

+zTCc
T RCcz



















dt
0

∞

∫ (4.2.17)

which can be written in matrix block form
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J(θi ) = xT zT[ ] C(θi )
T QC(θi ) C(θi )

T QD(θi )Cc

Cc
T D(θi )

T QC(θi ) Cc
T D(θi )

T QD(θi ) + R( )Cc













x

z





dt

0

∞

∫ (4.2.18)

let x  be an augmented vector of the plant state and compensator state

x =
x

z






(4.2.19)

Then the cost can be rewritten as

J(θi ) = xT

0

∞

∫ Q (θi )xdt (4.2.20)

where

Q (θi ) =
C(θi )

T QC(θi ) C(θi )
T QD(θi )Cc

Cc
T D(θi )

T QC(θi ) Cc
T D(θi )

T QD(θi ) + R( )Cc













(4.2.21)

and the augmented state vector satisfies the equation

ẋ = A(θi )x (4.2.22)

where

A(θi ) =
A(θi ) B(θi )Cc

BcC(θi ) Ac + BcD(θi )Cc







(4.2.23)

If A(θi ) is stable, there exists a symmetric positive definite matrix P which satisfies the

Lyapunov equation:

A(θi )
T P(θi ) + P(θi )A(θi ) + Q (θi ) = 0 (4.2.24)

the cost can be rewritten as

J(θi ) = − xT (
0

∞

∫ A(θi )
T P(θi ) + P(θi )A(θi ))xdt (4.2.25)
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but

d

dt
xT P(θi )x[ ] = ẋ T P(θi )x + xT P(θi )ẋ (4.2.26)

using

ẋ = A(θi )x (4.2.27)

yields

d

dt
xT P(θi )x[ ] = xT (A(θi )

T P(θi ) + P(θi )A(θi ))x (4.2.28)

The cost is rewritten using (4.2.28) and (4.2.25)

J(θi ) = − d

dt
xT P(θi )x[ ]

0

∞

∫ dt

= − xT P(θi )x[ ]0

∞

= −(x∞
T P(θi )x∞ − x0

T P(θi )x0 )

(4.2.29)

If A(θi ) stable then x∞ = 0, and the cost is:

J(θi ) = x0
T P(θi )x0 (4.2.30)

Thus, the infinite time total cost of the control effort for the fixed compensator

Gc(s) = Cc sI − Ac( )−1
Bc + Dc  over the workspace is the sum of each cost at the

respective values of theta.  The total cost varies for the nominal compensator Gc  which

is optimal only for a fixed arm orientation θi

TJ Gc( ) = J θi( )
i=0

n

∑ (4.2.31)

where the fixed compensator state matrices are given by:

Ac = Ai − KiCi + BiCc − KiDiCc

Bc = Ki
(4.2.32)
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Thus by finding the minimum value of

Τ J Gc( ) (4.2.33)

for various nominal compensators, the ‘optimal’ nominal fixed gain compensator is

found.  An example is shown in Section 4.6.

4.3  Fixed Robust Dynamic Compensator

The main focus of the discussion in this section is the stability of feedback control

systems.  There is a difference between nominal  stability and stability-robustness.

Nominal stability relates to the stability of the feedback loop that employs the

mathematical model of the nominal plant.  Stability-robustness refers to the stability of

the feedback loop that contains the actual plant.  The fact that model errors cannot be

precisely defined presents a significant challenge in ensuring closed-loop stability.

Indeed, model errors may not correspond to a finite-dimensional dynamic system (a

very small but unknown time-delay is a good example), so that a state-space

representation for modeling errors is inappropriate.  Thus, checking the eigenvalues of

a particular matrix is not sufficient for stability-robustness, unlike the eigenvalue based

tests which are available for deducing nominal stability using state-space models.  This

state of affairs forces the examination of stability-robustness using frequency domain

ideas and tests.

To derive these frequency domain stability-robustness tests for SISO feedback loops,

one can use the familiar Nyquist stability criterion.  However, to develop stability-

robustness tests for multivariable feedback systems, it is necessary to develop a MIMO
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Nyquist stability criterion.  MIMO Nyquist tests using the singular value concept can

also be used to arrive at stability for MIMO systems.

Nominal Stability and Stability-Robustness

The nominal compensator Gc(s) developed for the plant Gi (s)  that was discussed in

the preceding section will be used in this section as the initial compensator.  The

nominal compensator Gc(s) is modified by changing the output gain Cc  such that the

nominal feedback loop shown in Figure 4.3.1 is robust.  Thus the nominal feedback

loop addresses the nominal stability issue.

u(s)
y(s)

Gn (s ) Gc (s )

Cn(sI −An)−1Bn
1

Cc sI − Ac( )−
Bc+

Figure 4.3.1 Fixed Robust Compensator - Nominal Stability

Alternatively the nominal or average model could have been computed in the state space

domain by the following procedure (Anderson, 1989).

Step 1:  Compute the Average Model

G(θi ,s) = C(θi ) sI − A(θi )( )−1
B(θi ) + D(θi )   

(Plant Models) (4.3.1)

Aave = diag A(θ1), A(θ2 ), ... A(θ p )[ ], 
  

Bave =

B(θ1)

B(θ2 )

M

B(θ p )



















(4.3.2)
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Cave = 1
p

C(θ1), C(θ2 ), ... C(θ p )[ ], Dave = 1
p

D(θi )
i=1

p

∑ (4.3.3)

Gave(s) = Cave sI − Aave( )−1
Bave + Dave    (Average Model) (4.3.4)

The order of Gave(s)  is ‘np’, where ‘n’ is the number of states in each model.  Since

the average system order can be quite large, the chosen nominal model will be Gi (s)

developed in the preceding section.

To address the stability robustness issue, the nominal compensator will be used with

the actual feedback loop, where the elbow joint angle θ  is changing with time as

shown in Figure 4.3.2.

u(s) y(s)
+ Cc sI − Ac( )−1

Bc

(s)GcG (θ, s)

)
−1

B− AC(θ) sI((θ) (θ) (θ)

Figure 4.3.2 Fixed Robust Compensator with Large Plant Variations

Structured and Unstructured Uncertainty

Since the late seventies, the words structured uncertainty and unstructured uncertainty

have been used to distinguish between two types of plant uncertainty and model errors.

A brief overview of these two types of uncertainties is given below.

Plant structured uncertainty  refers to model errors caused by the assumption that the

actual plant  is linear, time-invariant and with the same order as the nominal plant

model, except that the numerical values of the matrices that define the state space

representation are different.  Additional information may be available with respect to the
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range of the numerical values.  Such structured uncertainty gives rise to model errors

that leave the number of poles and zeroes invariant, but they influence the location of

the actual poles and zeroes (and their directions) as compared to the nominal values.

Unstructured uncertainty  is quite different.  Assume that the actual plant is still linear

and time-variant.  However, plead total ignorance regarding the order of the plant and

its phase characteristics.  In particular, the key assumption of unstructured uncertainty

is that model errors are characterized by ±180° phase uncertainty.  Such complete

phase uncertainty due to modeling errors, can “flip” the sign of the nominal feedback

loop(s) and perhaps lead to instability.

Modeling errors due to unstructured uncertainty cannot be captured by a finite

dimensional state space model.  Thus one can adopt an input-output model and use

frequency domain methods to “bound” the size of the model error.

The design philosophy for meeting the stability-robustness specification hinges on the

assumption that the maximum bound for all elbow joint angles, or plant perturbation, is

known.  The maximum bound satisfies the following equation:

  

Ea( jω ) = max

i = 1.. p

G(θi , jω ) − Gn( jω )( ) ∀θ ∈ 0o,90o[ ] (4.3.5)

Using the phase information from the additive uncertainty vector Ea( jω )  enables the

use of structured uncertainty stability robustness properties, which are less conservative

than unstructured uncertainty.  In unstructured uncertainty the phase would have been

completely arbitrary.  
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With the definition above, Ea( jω )  reflects the largest variation between any of the ‘p’

plant models and the design model Gn( jω ).

The control block diagram representing the additive model error is shown below.

u(s) y(s)
Cc sI − Ac( )−1

Bc

(s )Gc

+Cn sI − A( )
−1

Bn n

E a (s )

+

Figure 4.3.3 Additive Model Errors

Return Difference Transfer Function Matrix

Since frequency-domain representation are used, and the concern is about stability, one

must be sure that the transfer functions do not hide any right-half plane pole-zero

cancellations, thus the standing assumption is made that  Gc(s)Gn(s)  does not have any

right half plane pole-zero cancellations.  Define the loop transfer function matrix Tn(s)

by Tn(s) = Gc(s) Gn(s) + Ea s( )[ ].  The following relationship holds for the system of

Figure 4.3.3.

y(s) = C(s)u(s) (4.3.6)

where C(s) is the closed-loop transfer matrix given by

C(s) = Tn(s) I + Tn(s)( )−1 = I + Tn(s)( )−1
Tn(s) (4.3.7)

and I + T(s)  is the return difference transfer function matrix.  The magnitude of the

return difference matrix I + Tn( jω )  represents the distance of the nominal Nyquist
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locus, Tn( jω ), to the “critical point”, -1.  The basic idea of the stability-robustness

tests relies on the following interpretation:  If at each frequency, the “size” of the

modeling error Ea( jω )  is less than I + Tn( jω ) , then the number of encirclements

cannot change and closed-loop stability is retained.  More specifically, if

σ (L−1 − I) < σ I + Gc( jω )Gn( jω ) + Gc( jω )Ea( jω )[ ]
 

,  ∀ω ∈ 0,∞[ ] (4.3.8)

where

L = Diag kneJφn[ ] (4.3.9)

then the actual feedback loop is closed-loop stable.  Thus the stability-robustness test is

a sufficient  condition for the stability of the feedback system in the presence of the

structured modeling errors.  

0

0.5

1

1.5

-5 0 5 10 15

Gain Margin    , dBkn

σ ( L−1 − I)

Maximum
Singular
Value

70 °

  0 °
10 °

20 °

30 °

40 °

50 °

60 °

80 °

90 °

Phase Margin,        ,deg ± φn

σ (L−1 − I) = 1 −1 / kn( )2 +2 1− cosφn( ) / kn

Figure 4.3.4 Universal Diagram for Gain-Phase Margin Evaluation

Equation 4.3.8 can be visualized by examining the diagram for gain-phase margin

evaluation.  Figure 4.3.4 can be used to determine the gain margins for a particular
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phase margin for simultaneous changes of both gain and phase in all input channels

(Mukhopadhyay, 1982).

4.4  Gain Scheduled Compensator

The nominal arm configuration is now perturbed about the nominal “set point”.  By

allowing the controller gain vector Cc  to be a free parameter, the quadratic performance

cost function is evaluated over the surface of the gain space.  The minimum of this

surface is found.  This process is continued for various arm configurations.  Once the

‘optimal’ gains and the respective surfaces are known, questions such as, “are the

‘optimal’ gains simply connected?” can be explored.  If such gains are simply

connected, an ‘optimal’ polynomial expression of the gain versus the robot joint angle

could be derived using optimization approaches.  If the gains are not simply connected,

a look-up table will be used to adjust the output gain vector.

By adjusting the elbow joint angle, the system matrices are a function of θ .  The new

state estimator is now a dynamic compensator which will remain fixed.  The

compensator state gain Cc  will vary with the parameter θ  to minimize some

performance function.  The gain scheduled compensator is shown in Figure 4.4.1

  +
y

  

˙ x = A(θ) x +B (θ)u

y=C(θ) x +D (θ )u

z = AC z + BC y˙ 

ue u1

u2

update

 Cc(θ)

Figure 4.4.1 Gain Scheduled Compensator
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The plant dynamic equations for the time varying system is ue = 0, and u = u1 = u2:

ẋ = A(θ )x + B(θ )u

y = C(θ )x + D(θ )u
(4.4.1)

The state compensator feedback gain will be allowed to change with θ .

ż = Acz + Bcy

u = Cc(θ )z
(4.4.2)

The state equations for zero exogenous inputs are:

ẋ = A(θ )x + B(θ )Cc(θ )z

ż = (AcC(θ ) + BcD(θ )Cc(θ ))z + BcC(θ )x

y = C(θ )x + D(θ )u

= C(θ )x + D(θ )Cc(θ )z

(4.4.3)

Written in block matrix form:

ẋ

ż






=
A(θ ) B(θ )Cc(θ )

BcC(θ ) Ac + BcD(θ )Cc(θ )






x

z






y

u






=
C(θ ) D(θ )Cc(θ )

0 Cc(θ )






x

z






(4.4.4)

The Linear Quadratic Regulator (LQR) cost function is given by

J = [yTQy + uT Ru]dt
0

∞

∫ (4.4.5)

inserting

uT = zTCc(θ )T

yT = xTC(θ )T + zTCc(θ )T D(θ )T
(4.4.6)

into (4.4.5), yields:

J =
xTC(θ )T + zTCc(θ )T D(θ )T{ }Q C(θ )x + D(θ )Cc(θ )z{ }

+zTCc(θ )T RCc(θ )z












dt

0

∞

∫ (4.4.7)
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rewriting,

J =

xTC(θ )T QC(θ )x + xTC(θ )T QD(θ )Cc(θ )z

+zTCc(θ )T D(θ )T QC(θ )x + zTCc(θ )T D(θ )T QD(θ )Cc(θ )z

+zTCc(θ )T RCc(θ )z



















dt
0

∞

∫ (4.4.8)

Which can be written in matrix block form

J = xT zT[ ] C(θ )T QC(θ ) C(θ )T QD(θ )Cc(θ )

Cc(θ )T D(θ )T QC(θ ) Cc(θ )T D(θ )T QD(θ ) + R( )Cc(θ )













x

z





dt

0

∞

∫

(4.4.9)

Let x  be an augmented vector of the plant state and compensator state

x =
x

z






(4.4.10)

Then the cost can be rewritten as

J = xT

0

∞

∫ Q (θ )xdt (4.4.11)

where

Q (θ ) =
C(θ )T QC(θ ) C(θ )T QD(θ )Cc(θ )

Cc(θ )T D(θ )T QC(θ ) Cc(θ )T D(θ )T QD(θ ) + R( )Cc(θ )













(4.4.12)

and the augmented state vector satisfies the equation

ẋ = A(θ )x (4.4.13)

where

A(θ ) =
A(θ ) B(θ )Cc(θ )

BcC(θ ) Ac + BcD(θ )Cc(θ )






(4.4.14)
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If A(θ ) is stable, there exist a symmetric positive definite matrix P which satisfies the

Lyapunov equation:

A(θ )T P(θ ) + P(θ )A(θ ) + Q (θ ) = 0 (4.4.15)

The cost can be rewritten as

J = − xT (
0

∞

∫ A(θ )T P(θ ) + P(θ )A(θ ))xdt (4.4.16)

but

d

dt
xT P(θ )x[ ] = ẋ T P(θ )x + xT P(θ )ẋ (4.4.17)

using

ẋ = A(θ )x (4.4.18)

yields

d

dt
xT P(θ )x[ ] = xT (A(θ )T P(θ ) + P(θ )A(θ ))x (4.4.19)

The cost is rewritten using (4.4.19) and (4.4.16)

J = − d

dt
xT P(θ )x[ ]

0

∞

∫ dt

= − xT P(θ )x[ ]0

∞

= −(x∞
T P(θ )x∞ − x0

T P(θ )x0 )

(4.4.20)

If A(θ ) is stable then x∞ = 0, and the cost is

J = x0
T P(θ )x0 (4.4.21)

The objective of the gain schedule control law is to find J* such that

J* = min J
Cc(θ )

(4.4.22)
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This minimum cost can be easily determined for each value of θ .  By plotting J as a

function of  Cc1(θ )  and  Cc2(θ ) and minimizing the variance of the error between J

and a polynomial function ofθ , a polynomial for the optimum gain scheduled control

law can be found.  In terms of real time control this analysis could be performed off

line to reduce real time computational burden of the onboard computers.  This gain

scheduled compensator or the following adaptive frequency domain compensator were

not further developed in this thesis due to the computational burden of the method.

However an interesting adaptive control scheme will result if sufficient onboard

computation is available.

Adaptive Frequency Domain Compensator

A new adaptive control design method which does not require:

The plant Strictly Positive Real (SPR) property;

An adaptive realization of the plant;

The design of a performance (or reference) model;

is described in this section.  This MIMO design method updates the compensator gains

directly based on new information gained from a measurement of Frequency Response

Function (FRF) from available sensor data.  Using gradient based optimization

techniques, this method updates the compensator gains based on performance and

stability objectives when the plant is slowly time varying or if the plant has pole, zero,

or influence coefficient uncertainties or perturbations which are represented in the error

bars of a multiple FRF measurement.  The performance objective is based on a linear

combination of a frequency weighted Linear Quadratic Regulator (LQR), combined
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with a stability criterion derived from the minimum singular value of the return

difference matrix.

The Frequency domain Performance/Stability optimization for adaptive control method

is similar to a digital Robust Control Law Synthesis using constrained optimization

(Mukhopadhyay, 1989).  With Mukhopadhyay’s method, a linear quadratic Gaussian

cost function is minimized by updating the free parameters of the control law, while

satisfying a set of constraints on the design loads, responses, and stability margins.

Analytical expressions for gradients of the cost function and the constraints, with

respect to the digital control law design variables, are used to facilitate numerical

convergence.  One difficulty with this technique is that the steady-state mean square

responses are computed by solving the steady-state condition of the discrete Lyapunov

function.  Thus this Lyapunov function cannot be solved if the closed loop system is

unstable.  The algorithm in its present form would fail to attenuate appropriate loop

gains when a new plant realization renders an unstable closed loop system.  Thus the

controller may not adapt to a time varying linear plant.  This method also requires

knowledge of the expected value of the plant and output discrete covariance matrices.

Measurement noise covariance’s are easily derived from experimental data, while the

plant noise covariance determination is considerably less tractable.  The method also

requires a realization of the plant system matrices.

The frequency domain performance/stability optimization method proposed herein does

not require the solution of the steady-state condition of the discrete Lyapunov function.

Hence the optimization space may resolve unstable closed loop systems by attenuation

of the respective loops while minimizing the performance indices.  The MIMO FRF

plots are also a more accurate indicator of the plant response than are realizations from

the FRF.  A distinctive property of this method is that no plant realization is required
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for the update of control parameters.  The method is applicable to non-minimum phase

systems as well as when plant dimension is of larger order than the controller.

A nominal compensator is first designed as discussed in Section 4.2.  While the system

is under control, a closed loop Frequency Response Function (FRF) Gcl
* ( jω ) can be

determined.  It can also be derived from open loop data with knowledge of the nominal

compensator K( jω )  by using (4.4.23).

Gcl
* (θ, jω ) = (1 + Gop(θ, jω )K(θ, jω ))−1Gop(θ, jω ) (4.4.23)

where

K(θ, jω ) = Cc(θ, jω ) jωI − Ac( )−1
Bc (4.4.24)

Notice the compensator Ac   and Bc  matrices are constant.  The FRF of the control

input ucl ( jω )is also available.  However, it is important to note that since these

equations are in the frequency domain, the input used during the data gathering

experiment is periodic.  In addition, one has to assume that aliasing is appropriately

handled.  The two FRF’s can be used to determine the cost of the closed loop system

with a known nominal compensator K(θ, jω ) .  This closed loop cost is thus

determined using open or closed loop data.

J(θ ) = tr Gcl
*T (θ, jω )QGcl

* (θ, jω ) + ucl
T (θ, jω )Rucl (θ, jω )[ ]

−∞

∞

∫ dω (4.4.25)

Since an observer is not utilized in the controller, the compensator represents a

generalized dynamic feedback controller.  By allowing only the gain matrix Cc(θ, jω )

to change, the cost is minimized using open or closed loop data.  If this were an

observer/controller system there would be one global minimizing controller which

would simultaneously guarantee the well known LQR robustness properties.
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However, minimizing the above integral does not guarantee robust closed loop system

behavior.  Thus while minimizing the above integral, an additional cost or constraint,

which reflects the stability of the return difference matrix is added.

J(θ ) = tr Gcl
*T (θ, jω )QGcl

* (θ, jω ) + ucl
T (θ, jω )Rucl (θ, jω )[ ]

−∞

∞

∫ dω

+ ks f σ I + K(θ, jω )Gop(θ, jω )[ ],η( )
(4.4.26)

where ks ≡  gain of stability cost and

f (⋅) ≡ η − σ I + K(θ, jω )Gop(θ, jω )[ ] when σ ⋅( ) ≤ η
0 when σ ⋅( ) > η









(4.4.27)

and σ  is the minimum experimental singular value.  Assuming the closed-loop system

is stable, the robustness of the nominal system at the plant input can be examined by

computing σ I + K(θ, jω )Gop(θ, jω )[ ]  as a function of frequency ( s = jω ) and using

the guaranteed stability criterion

σ (L−1 − I) < σ I + K(θ, jω )Gop(θ, jω )[ ] (4.4.28)

at all frequencies.  The matrix L  is a diagonal gain and phase change matrix at the input

of the plant as shown in Figure 4.4.2, and σ  is the maximum singular value.

L = Diag kneJφn[ ] (4.4.29)

-   

K(θ,s)Gop(θ,s)

Cc(θ) sI − Ac( )−1
BcC(θ) sI − A( )

−1
BL

Figure 4.4.2 Diagonal Gain and Phase Change Matrix at Plant Input
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The value of η  is chosen based on desired gain and phase perturbation robustness

properties.  The matrix L  is the identity matrix for the nominal system and it can be

shown that

σ (L−1 − I) = 1 −1 / kn( )2 + 2 1 − cosφn( ) / kn (4.4.30)

Equation (4.4.30) is plotted in Figure 4.3.4 (Newsom, 1983).  By examining the

universal diagram for gain-phase margin, the designer chooses the desired stability

properties and the corresponding value of η .  This figure can be used to determine the

gain margins for a particular phase margin for simultaneous changes of both gain and

phase in all input channels (Mukhopadhyay, 1982).  For example, if a simultaneous

gain and phase perturbation robustness of (-3,6) dB and ± °20  phase margin were

desired, then a value of η  = 0.4  would be utilized.  Since the minimum singular value

is determined directly from test data as opposed to realizations of the data, it is a very

accurate indicator of the actual gain and phase margins which exist in the loop.  

4.5  Spline Varying Optimal (SVO) Compensator

The plant dynamic equations for the time varying system is

ẋ = A(θ )x + B(θ )u

y = C(θ )x + D(θ )u
(4.5.1)

The equivalent plant dynamics can be described by an N-th order transfer function

G(s) = β1(θ )sn−1 + β2(θ )sn−2 +...+βn(θ )

sn + α1(θ )sn−1+...+αn(θ )
(4.5.2)

by using the change of state matrix
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Tob =

C

CA

M

CAn−1



















−1

(4.5.3)

where the new state variable and state matrices are given by x̂ob = Tob
−1x ,

Âob = Tob
−1ATob , B̂ob = Tob

−1B  , Ĉob = CTob

The time varying observer can be described in an observable canonical state-space

equation by:

ˆ̇xob = Âob(θ )x̂ob + B̂ob(θ )u + Ky( ŷ − y)

ŷ = Ĉob x̂ob + D̂ob(θ )u
(4.5.4)

where the observer state matrix, influence matrix and output matrices are given by

  

Âob θ( ) =

0 1 0 L 0

0 0 1 L 0

0 0 0 L M

M M M O 1

−αn θ( ) −αn−1 θ( ) −αn−2 θ( ) L −α1 θ( )























(4.5.5)

  

B̂ob θ( ) =

β1 θ( )
β2 θ( ) − α1 θ( )β1 θ( )

β3 θ( ) − α1 θ( )β1 θ( ) − α2 θ( )β2 θ( ) + α1
2 θ( )β1 θ( )

M



















Ĉob = 1 0 L 0[ ]

(4.5.6)

The optimal control can be implemented by full-state feedback and is given by

u* = Cc(θ )x̂(t) (4.5.7)

The control gain matrix Cc(θ )   is given by

Cc(θ ) = −R−1B̂ob(θ )T P(θ ) (4.5.8)
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The matrix P(θ ) = P(θ )T ≥ 0   is computed from the solution of the following algebraic

Riccati equation:

Âob(θ )T P(θ ) + P(θ )Âob(θ ) − P(θ )B̂ob(θ )R−1B̂ob(θ )T P(θ ) + Q = 0 (4.5.9)

The SVO compensator block diagram is shown in Figure 4.5.1.  An example problem

will be shown in Section 4.6 which will demonstrate that the dependence on θ  is

captured by the cubic spline function.

ŷ

y

 ̂y  

+ Ky( )−y
-

+

ˆ A ob(θ)

ˆ B ob(θ)

Cob

Cc(θ)

1
s

+  
B (θ)

A (θ)

C (θ)
yu

+
1
s

ˆ 

Figure 4.5.1 SVO Compensator Block Diagram
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4.6  Performance Comparison

This section evaluates the various control law strategies based on a consistent cost

function.  The compensators are applied to the two link model and the open and closed

loop performance for a wide variety of arm orientations are compared.  Table 2.3.1

shows the non dimensional parameters used for the two link model.  Ten modes were

included in the truth model.  Table 2.5.1 indicates the open loop eigenvalues as a

function of theta.  The infinity norm of the Bode response as a function of mode

number and theta is shown in Figure 2.6.1.

Fixed Dynamic Compensator Results

The fixed dynamic compensator design results show that the ‘optimal’ nominal arm

orientation for the fixed compensator was at θi = 50° .  Below is the cost as computed

in Section 4.2 as a function of theta, where

J(θi ) = x0
T P(θi )x0 (4.6.1)

where

Q (θi ) =
C(θi )

T QC(θi ) C(θi )
T QD(θi )Cc

Cc
T D(θi )

T QC(θi ) Cc
T D(θi )

T QD(θi ) + R( )Cc













(4.6.2)

and the augmented state vector satisfies the equation

ẋ = A(θi )x (4.6.3)

where

A(θi ) =
A(θi ) B(θi )Cc

BcC(θi ) Ac + BcD(θi )Cc







(4.6.4)
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and the symmetric positive definite matrix P  satisfies the Lyapunov equation:

A(θi )
T P(θi ) + P(θi )A(θi ) + Q (θi ) = 0 (4.6.5)

Each initial state in x0  was set equal to one for all performance comparisons.  The

Output weighting gain was Q = 0.1, the input weight was R = 0.001.  The process

noise and measurement noise covariance’s were Qw = 0.1 and Rv = 0.1 respectively for

all performance comparisons. The fixed compensator performed well for most arm

orientations (Figure 4.6.1).

Open Loop

Fixed Compensator

Theta

C
os

t
J

θ i(
)

0

0.2

0.4

0.6

0.8

1

1.2

0 10 20 30 40 50 60 70 80 90

Figure 4.6.1 Open and Closed Loop Cost Comparison as a Function of Theta - Fixed
Compensator

Although there were no instabilities induced by the fixed dynamic controller, the gain

and phase margins were small.  The minimum singular value of the return difference

matrix evaluated over the workspace for the fixed controller reached

σ I + Gc( jω )G(θi , jω )[ ] = 0.16,  ∀ω ∈ 0,∞[ ],  
  
∀θ ∈ 0o,90o[ ] (4.6.6)

indicating that there was only a 10° phase margin (See Figure 4.3.4).  This low phase

margin occurred for the θ = 90° arm orientation.  The presence of no instabilities
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reflects the fact that there is significant modal frequency separation between successive

modes, and significant attenuation of the infinity norm of the residual modes.

The total cost is found by calculating the area under the above curves for the fixed

dynamic compensator.

Τ J Gc = Fixed Compensator( ) = J θi( )
i=0

10

∑ = 1.268 (4.6.7)

The 10 values in the summation correspond to values of theta in increments of 10°

from 
  
0o,90o[ ].  For comparison, the open loop total cost is evaluated by setting the

fixed compensator to zero.  Thus

Τ J Gc = 0( ) = J θi( )
i=0

10

∑ = 9.477 (4.6.8)

Fixed Robust Dynamic Compensator results

The fixed robust compensator results show an improved performance over all arm

orientations.  The mandated stability constraint was a 40°  phase margin, or

σ (L−1 − I) = 0.75.  Shown in Figure 4.6.2 is the Bode response of the nominal plant

model Gn(s)  at 50°.

The maximum bound on the additive model error over the entire workspace was

calculated from

  

Ea( jω ) = max

i = 1..10

G(θi , jω ) − Gn( jω )( ) ∀θ ∈ 0o,90o[ ] (4.6.9)

and is shown in the frequency domain in Figure 4.6.3.
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Figure  4.6.2 Bode Response of Nominal Plant Model Gn(s)  at 50°.

Figure  4.6.3 Maximum Bound on the Additive Model Error Ea( jω )

Using the optimization tools in Matlab a constraint of

σ I + Gc( jω )Gn( jω ) + Gc( jω )Ea( jω )[ ]≥ 0.75 (4.6.10)



104

was used to modify the return difference transfer function.  The resultant fixed robust

controller performance is depicted in Figure 4.6.4.
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Figure 4.6.4 Open and Closed Loop Cost Comparison as a Function of Theta - Fixed
Robust Compensator

Τ J Gc = Robust Compensator( ) = J θi( )
i=0

10

∑ = 3.022 (4.6.11)

Spline Varying Optimal Compensator Results

The observer Âob(θ ), B̂ob(θ ), Ĉob ,  and Cc(θ )  matrices were evaluated as a function

of theta.  These parameters were used in the observer equations to derive the state space

matrices.  Figures 4.6.5 and 4.6.6 show the non zero Âob(θ )  coefficients α1 θ( ) and

α2 θ( ) in the observer dynamic equations.

ˆ̇xob = Âob(θ )x̂ob + B̂ob(θ )u + Ky θ( )( ŷ − y)

ŷ = Ĉob x̂ob + D̂ob(θ )u
(4.6.12)
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where

Âob θ( ) =
0 1

−α2 θ( ) −α1 θ( )






(4.6.13)

Figures 4.6.7 and 4.6.8 show the B̂ob(θ )  coefficients β1 θ( ) and β2 θ( )., where

B̂ob θ( ) =
β1 θ( )

β2 θ( ) − α1 θ( )β1 θ( )








 (4.6.14)

Since the observer is the observer canonical form, the non zero elements of the Ĉob

vector is simply one.

Ĉob = 1 0[ ] (4.6.15)

Figure 4.6.9 and 4.6.10 show  Cc1(θ )  and  Cc2(θ ) , which were found by solving the

algebraic Riccati equation for each value of theta.  

Cc(θ ) = −R−1B̂ob(θ )T P(θ ) (4.6.16)

The matrix P(θ ) = P(θ )T ≥ 0   is computed from the solution of the following algebraic

Riccati equation:

Âob(θ )T P(θ ) + P(θ )Âob(θ ) − P(θ )B̂ob(θ )R−1B̂ob(θ )T P(θ ) + Q = 0 (4.6.17)

The observer gain Ky1(θ ) and Ky2(θ ) were found using the process noise and

measurement noise covariance’s where Qw = 0.1 and Rv = 0.1.  Table 4.6.1 shows the

numerical Markov parameters and controller and observer gain for 10 successive values

of theta starting at θ2 =0.  

For each graph 4.6.6 through 4.6.12, the observer and optimal gain were plotted as a

function of θ2 .  Each of the curves were then fitted to a third order polynomial.
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Table 4.6.1

SVO Compensator Parameters

Theta
(Degrees) α1 θ( ) α2 θ( ) β1 θ( ) β2 θ( )

0 1.6356e-02 0.6688 -8.3579e-06 -2.0611e+01

10 1.6412e-02 0.6734 -8.4277e-06 -2.0787e+01

20 1.6583e-02 0.6875 -8.6416e-06 -2.1328e+01

30 1.6874e-02 0.7118 -9.0135e-06 -2.2273e+01

40 1.7294e-02 0.7477 -9.5688e-06 -2.3690e+01

50 1.7857e-02 0.7972 -1.0347e-05 -2.5694e+01

60 1.8582e-02 0.8633 -1.1406e-05 -2.8459e+01

70 1.9495e-02 0.9501 -1.2829e-05 -3.2253e+01

80 2.0627e-02 1.0637 -1.4728e-05 -3.7486e+01

90 2.2020e-02 1.2122 -1.7240e-05 -4.4799e+01

Table 4.6.1 Continued

SVO Compensator Parameters

Theta
(Degrees) Cc1(θ ) Cc2(θ ) Ky1(θ ) Ky2(θ )

0 -3.0246e-01 -1.7053e-01 1.4220e+00 5.1111e-01

10 -3.0251e-01 -1.6982e-01 1.4206e+00 5.0900e-01

20 -3.0265e-01 -1.6769e-01 1.4161e+00 5.0267e-01

30 -3.0290e-01 -1.6417e-01 1.4085e+00 4.9200e-01

40 -3.0326e-01 -1.5928e-01 1.3978e+00 4.7686e-01

50 -3.0375e-01 -1.5307e-01 1.3835e+00 4.5709e-01

60 -3.0438e-01 -1.4560e-01 1.3657e+00 4.3256e-01

70 -3.0517e-01 -1.3696e-01 1.3440e+00 4.0321e-01

80 -3.0616e-01 -1.2726e-01 1.3185e+00 3.6920e-01

90 -3.0737e-01 -1.1665e-01 1.2892e+00 3.3102e-01

It should be noted that the third order polynomial is an approximation of the data.  The

actual optimal gain function will be of a higher order, at least sixth order in theta,

although a third order polynomial is a very good approximation.  Thus SVO controller
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can be implemented easily on a computer in real time.  The respective third order

polynomial coefficients are shown in each graph.
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Figure 4.6.13 shows the open and closed loop (SVO) cost versus theta.  There is an

improvement of 20:1 over the open loop manipulator along the range of motion.
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Figure 4.6.13 Open and Closed Loop Cost Comparison as a Function of Theta - SVO
Compensator

A cost comparison of the controllers studied above is summarized in Table 4.6.2.  All

of the compensators improved the open loop performance over the workspace.  For

comparison purposes, the total cost of the open and closed loop systems is computed

by integrating the area under the curves above.  These results for the open loop, fixed

robust compensator, fixed compensator SVO  compensator are plotted in Figure

4.6.14.  Figure 4.6.14 indicates the improvement of the SVO controller over the fixed

gain and fixed robust controller.  It is important to note that the fixed gain controller

remains stable over a wide variety of elbow pitch arm angles, although its performance

is significantly worse than that of the SVO controller.  The overall improvement in

performance is 7:1 for the fixed gain compensator, 3:1 for the fixed robust

compensator, and 20:1 for the SVO compensator.  Although the stability margin for the

fixed gain controller was relatively low (10° phase margin), its performance was about
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Table 4.6.2

Cost Comparisons

Open Loop Closed Loop

Theta
(Degrees) Cost

Cost
Fixed Gain

Cost
Fixed Robust

Cost
SVO

0 1.153 0.217 0.420 0.0512

10 1.144 0.185 0.401 0.0510

20 1.118 0.128 0.346 0.0505

30 1.077 0.0792 0.253 0.0497

40 1.021 0.0567 0.198 0.0485

50 0.954 0.0471 0.182 0.0471

60 0.878 0.0585 0.194 0.0454

70 0.795 0.0852 0.235 0.0435

80 0.711 0.146 0.326 0.0413

90 0.626 0.265 0.467 0.0391

Total Cost

J θi( )
i=0

10

∑ 9.477 1.268 3.022 0.467
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Figure 4.6.14 Open and Closed Loop Cost Comparison as a Function of Theta
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two times better than the fixed robust compensator ( 40°  phase margin).  Thus, by

increasing the robustness of the closed loop system, the fixed robust compensator

sacrificed on performance.  

4.7  Summary

This chapter has developed and compared the theoretical and numerical results for

several control strategies of a time varying flexible manipulator.  The consistent cost

functions for evaluation of the various controllers on the time varying system have been

derived.  An example problem was used to evaluate the performance of the various

controllers for the time varying system.  It was determined that a fixed robust controller

can remain stable over the workspace limits, although its performance is sacrificed at

the expense of stability margins.  A novel SVO controller has been developed.  There

are several advantages of the SVO controller over traditional gain scheduling

controllers.  The four advantages of using the SVO controller where the spline function

approximates the system model, observer, and controller gain are:

(1) The spline function approximation is simply connected, thus the SVO

controller is more continuous than traditional gain scheduled controllers

when implemented on a time varying plant.  

(2) The SVO controller is easier for real time implementations in storage and

computational effort, when compared to traditional gain scheduled

compensators.

(3) Where system identification is required, the spline function requires fewer

experiments.  Namely four experiments are required to identify the four
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polynomials in each of the non zero elements in the controller (See

Chapter 3).

(4) Startup transients are reduced.  When the estimator is determining the state

at all times during the maneuver, initial estimator transients can be

eliminated.

The SVO controller outperformed the fixed gain and fixed robust controller as

determined by the consistent cost function.  The SVO controller developed in this

section is the first  simply connected time varying compensator shown in the literature.

As discussed in the previous chapter on system identification, the fundamental mode

Markov parameters which are unique, satisfy a third order approximation, or spline

function, as a function of the elbow joint angle (θ2 ).  In this chapter it was shown that

in addition to the Markov parameters satisfying the spline function, both the observer

gain and the time varying regulator gains satisfy this spline function approximation.

The results of this observation allow the myriad of free parameters in a time varying

optimal controller to be reduced to a fundamental set of time varying optimal parameters

which are simply connected.  With the SVO controller there is an improvement of 20:1

over the open loop manipulator dynamics along the range of motion.
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CHAPTER 5

ACTIVE VIBRATION DAMPING OF THE SPACE SHUTTLE REMOTE

MANIPULATOR SYSTEM

In this chapter the various control strategies described in Chapter 4 are applied to a high

fidelity simulation code of the Shuttle Remote Manipulator System (SRMS).  The code,

which is used routinely for predicting arm dynamic motions for on-orbit RMS

operations, was obtained from Charles Stark Draper Laboratory (CSDL) for this

purpose.  The simulation code includes models of the RMS structural dynamics, joint

servos, motors, gearboxes, and the software modules loaded in the Shuttle computers

for RMS control (Metzinger, 1988).  To demonstrate that the Draper RMS simulation is

a valid representation of the flight article, 22 specific maneuvers were performed in

flight and reproduced via DRS simulation (Gray, 1985).  The comparisons show

excellent agreement between DRS and flight data.  Various sensor/actuator pairs are

evaluated including collocated control with the shoulder and elbow joints.  For both

joints, feedback of the tachometer measurement initially results in a small increase in

RMS damping.  However, feedback of the acceleration measurement to drive the

shoulder joint show a large increase in damping.  Linear models are derived for four

arm orientations and are used to derive SVO controller.

The approach to the RMS active damping feasibility study is the following.  First, a set

of payloads and arm configuration combinations consistent with the types of payloads

expected during Space Station Freedom assembly is defined.  Second, RMS dynamics

and operational characteristics were examined using the nonlinear Draper RMS
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Simulator (DRS) code.  The determination of active damping augmentation feasibility

involved the design and simulation of candidate damping augmentation control laws.

For this purpose, system identification methods were employed on output data from the

DRS to identify time varying nonlinear models which closely match the DRS response.

With the nonlinear control design models, various active control law design concepts

described in Chapter 4 were evaluated, as were the requirements for feedback sensors

to measure arm motions.  The final step was the simulation of the SVO control law in a

modified version of the DRS to determine the effects of system kinetic and kinematic

nonlinearities and computer time delays.

5.1 Shuttle Remote Manipulator System

Figure 5.1.1 illustrates the elements of the Space Shuttle RMS (JSC, 1988).  The

system is a six-joint telerobotic arm controlled from a panel located on the aft flight

deck of the Space Shuttle.  These six joints are directly analogous to the joints and

freedom of a human arm, defined as shoulder-yaw and pitch, elbow-pitch, and wrist-

pitch, yaw, and roll.  An end effector for grappling payloads is mounted at the free end

of the arm.  From the control panel and translational and rotational hand controllers,

commands to move the arm are processed by the Shuttle computers and an interface

unit to provide electrical signals to drive the joint servo motors.  The actual joint servo

commands that are generated depend on the selected operational mode, which can be

either direct drive, single joint mode, one of four manual augmented modes, or an

automatic control mode.  The manual augmented mode is normally used for payload

operations on-orbit, although the single joint mode is used for RMS stowing and to

avoid joint singularities.  Joint angle position and motor shaft rate at each joint are

measured by an encoder and tachometer, respectively.
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Figure 5.1.1 Space Shuttle Remote Manipulator System (RMS)

Fixed slew rates mandated by safety operational procedures

In all reconfigurable structures there is an upper bound slew rate demanded by safety

operational procedures.  This slew rate is best described as a fixed velocity and

acceleration rate of the servos driving the structural joints.  The velocity constraint

manifests itself as a finite rate at which the arm or tip can be positioned.  This constraint

ensures that the structure can stop within an operational envelope to prohibit a collision.

The fixed acceleration upper limit slew rate ensures that stress loads in the mechanical

links do not exceed mandated safety limits.  It turns out that the acceleration slew rate,
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hereafter referred to as the slew rate, affects the spectrum of the vibratory energy

imparted to the electromechanical structure.

Without an upper bound slew rate constraint, a step input imparts energy into the

structure in a broad frequency band.  With the fixed slew rate constraint, the input has a

finite rate at which the servo can accelerate.  Table 5.1 indicates the fixed slew rate

limits for the SRMS (Ravindran,  1982).  These limits were mandated to provide the

ability to stop from maximum speed within 0.6 meters under all loading conditions.

The fixed slew rate serves to attenuate the high frequency response, especially for

heavier payloads.

Table 5.1.1

Slew Rate Limits of SRMS

Load Rate Limits

m/Sec Deg/Sec

Unloaded 0.6 4.76

Loaded
(15,000 Kg.)

0.06 0.476

Loaded
(30,000 Kg.)

0.03 0.238

Four RMS configurations were adopted for the system identification study.  These

configurations are shown in Figure 5.1.2 - 5.1.5 with the Shuttle PAllet Satellite

(SPAS) free-flyer spacecraft as an attached payload.  The SPAS payload was used for

the dynamic response studies.  Depicted in the plots are the RMS configurations for

various values of the elbow joint angle, with the SPAS attached payload used on the

STS-07 Shuttle mission.
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The time response data shown in Figure 5.1.6 are typical of the kind of RMS motions

encountered during normal arm maneuvers, as predicted by the DRS.  The plots depict

free responses following a 10-second single joint rotation command to the shoulder-

yaw joint, with the other joint positions maintained by the RMS position-hold function.

Shown are the lateral displacements of the free end of the arm, the shoulder-yaw joint

angle encoder response, and the shoulder-yaw joint rate derived from the motor shaft

tachometer.  After the command to the RMS is removed, the peak-to-peak free

oscillation at the tip of the arm is about 5 inches, while the actual measured joint angle

change during the same time is on the order of 0.1 degree.  The discrete stepping of the

encoder response is due to word length limitations in the Shuttle computer, indicating

that the signal is at the limit of useful resolution.  The yaw joint rate is on the order of

3.0 degrees/second, and again has discrete stepping characteristics which limit the

useful resolution of data.  These types of responses are an indication that the existing

RMS sensors may not be adequate for active damping augmentation purposes.

Because of this, the addition of another sensor in the form of a tip mounted

accelerometer was considered.  The DRS simulation was used to predict the response

of an accelerometer package mounted near the SPAS payload.  This simulated tip

acceleration measurement was used in feedback studies to determine if additional sensor

hardware would be beneficial for active damping augmentation of the RMS.
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Figure 5.1.6 Typical RMS response and sensor outputs - θ = 30° .

Global Mode Shape Analysis

Knowledge of the global mode shapes of the RMS was important in assessing the

feasibility of active damping augmentation of the RMS.  Since mode shapes change

with arm geometry, the four configurations were studied.  Appraisal was made of mode

shape observability and controllability from the available sensor and actuator suites.

Mode shape information was obtained using an eigenanalysis version of the DRS

(Gilbert, 1992).

Figure 5.1.7 shows an exaggerated representation of the second mode of the RMS .

The predicted frequency of this mode is 0.259 Hertz.  This mode shape includes a

significant amount of upper and lower boom bending.  Other RMS modes include
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Figure 5.1.7 RMS Second Structural Mode Shape
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considerable amounts of joint flexibility and/or orbiter sidewall flexibility, with little

boom bending contribution.  In order to assess the relative contributions of each

generalized coordinate in the state equations, the magnitudes of the eigenvector

elements were plotted.  Figure 5.1.8 is such a plot, showing the relative rotational

contribution of states 1 through 13, and the relative displacement of states 14 through

17.

5.2  Collocated Versus Non-Collocated Control

The existing tachometer sensors were used to feed back joint rate command signals to

reduce arm tip motion following a pilot maneuver.  Linear single-input, single-output

(SISO), state space models were developed to investigate the damping improvement

using local tachometer feedback to the respective joints and tip accelerometer feasibility

studies.  State-space models were developed to investigate state feedback controllers.

The methods and results for both cases are presented below.

Linear SISO state-space models of the RMS were derived from DRS response data

using system identification methods outlined in Chapter 3.  The data have been obtained

for single joint mode cases with the SPAS payload using the 3-second shoulder-yaw

joint rate command pulse as the input, and either the joint tachometer or linear

acceleration measurement at the tip of the arm as the output .  Assuming a nominal

model order of 8 states corresponding to 4 vibration modes, frequency, damping, and

influence coefficient parameters were selected to make the model best match the DRS

response data in a least-squares sense.  The SISO system identification results for the y

axis of the simulated tip accelerometer and the shoulder-yaw tachometer are shown in

Figure 5.2.1 and 5.2.2 respectively.  The solid line represents the nonlinear DRS

predicted response and the dotted line corresponds to the identified linear model
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response.  The identified linear models were used to evaluate the effect of tachometer

and accelerometer feedback on system modes (i.e. damping) through simple gain loop-

closures.

Collocated and Non-Collocated Active Damping Results

Figures 5.2.3 and 5.2.4 show the RMS damping improvement as a function of a scaled

gain parameter for feeding back the shoulder-yaw and pitch tachometer measurements,

and tip acceleration measurement.
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Figure 5.2.4 Damping as a Function of Scaled Gain Using the Shoulder-Pitch Joint

The initial damping values for zero gain for the two joints are different because the

joints excite and are able to control different structural modes.  For both joints,

feedback of the tachometer measurement initially results in a small increase in RMS

damping.  Feedback of the acceleration measurement in both cases shows larger

increases in damping.  Also shown in Figure 5.2.3 is the result of tachometer feedback

as predicted by the nonlinear DRS code, validating the linear model tachometer results.

5.3  Spline Varying System Identification

The SISO studies above investigated direct output feedback using tachometer and

accelerometer measurements.  Spline varying optimal controllers were also

investigated.  These SVO controllers were based on nonlinear models of the RMS
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dynamics.  The controller logic was implemented in the DRS nonlinear simulation so

that candidate control laws could be evaluated including the effects of nonlinear arm

dynamics, computer time delays, and existing RMS health and safety software

functions.  The controllers are of the form

xc(k + 1) = Ac(θ )xc(k) + Bc(θ )y(k)

u(k) = Ccxc(k) + Dc(θ )y(k)
(5.3.1)

where Ac(θ )  is the compensator dynamics matrix, Bc(θ ) is the control distribution

matrix, Cc  is the observation matrix, Dc(θ )  is the control feed-through matrix, xc   is

the control state vector.

The spline varying observer models used for control law design were outlined in

Chapter 3.  Four models were derived, corresponding to the four study positions of the

RMS in Figures 5.1.2 - 5.1.4.  All four models had one input corresponding to the,

shoulder-pitch, and one output corresponding to the in axis acceleration at the tip of the

RMS.  The shoulder joint was given a 3-second pulse rate command which was

intended to excite the low frequency modes.  The response data was aggregated to

allow the algorithm to identify a single model representing the response of the RMS to

the input.  The four models are second order, corresponding to fundamental structural

mode.  Prior to the system identification, the DRS simulation acceleration data were

processed through a first-order low-pass filter with a break frequency of 0.2 Hz.

Using the batch method, the observer Markov parameters were identified.

Ŷ θ( ) = β̂0 θ( ) β̂1 θ( ) α̂1 θ( ) β̂2 θ( ) α̂2 θ( )[ ] (5.3.2)

A summary of the identified observer Markov parameters for the four study

configurations are given in Table 5.3.1.  



128

Table 5.3.1

Identified Observer Markov Parameters

Theta
(Degrees)

β̂0 θ( ) β̂1 θ( ) α̂1 θ( ) β̂2 θ( ) α̂2 θ( )

0 2.2172e-17 -1.7278e-02 1.9842 1.7210e-02 -9.8794e-01

30 1.6627e-15 -1.7018e-02 1.9839 1.6945e-02 -9.8770e-01

60 -4.5981e-16 -1.5960e-02 1.9827 1.5876e-02 -9.8701e-01

90 1.5727e-15 -1.3153e-02 1.9810 1.3062e-02 -9.8599e-01

Notice that the identified β̂0 θ( )  parameter is nearly zero as expected.  Figures  5.3.1 -

5.3.4 show the identified observer Markov parameters plotted as a function of theta.

The spline function is used to interpolate between the identified models and is shown in

each figure.
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The time domain results of the system identification are shown in Figures 5.3.5 and

5.3.6 for a nominal arm orientation.  Shown are comparisons of the nonlinear DRS

simulation response data with one of the identified models.  Figure 5.3.5 shows the

arm tip position following the 3-second pulse shoulder-pitch rate command (from 0 to 3

seconds in the plot).  In this figure both the DRS nonlinear simulator (solid line) and

the identified linear model (dashed line) match so closely that the curves overlap.

Figure 5.3.6  illustrates the tip acceleration for both the DRS nonlinear simulator (solid

line) and the identified linear model (dashed line) for the same 3-second pulse

command.
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Figure 5.3.5 System Identification Results for the Tip Displacement
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5 . 4 Spline Varying Optimal Controller Design and Implementation in
RMS Software

The vibration suppression control law for each of the four configurations was

developed using the SVO control strategy of Section 4.5.  Each set point design used

the frequency weighted Linear Quadratic Regulator (LQR) design method of Gupta

(1980).  Prior to the frequency weighted LQR regulator design, a digital high-pass

prefilter was added in series to the identified model to reject steady-state bias as would

be encountered in feeding back accelerometer measurements in a real system.  This

filter had the digital form

N z( ) = τ1z + τ2

τ3z + τ4
(5.4.1)

where the constants τ1 through τ4  have the values 0.9707, -0.9707, 1, and -0.9414

respectively.  The values for this filter correspond to a first order high pass filter with a

break frequency of 0.12 Hz.  The identified model and prefilter are described by the

state-space model

x̂(k + 1) = Â(θ )x̂(k) + B̂(θ )u(k)

y(k) = Ĉx̂(k) + D̂(θ )u(k)
(5.4.2)

where

x̂(k) =
x̂1(k)

x̂2(k)









  

(5.4.3)

where

A(θ ) =
0 α2 (θ )

1 α1(θ )






, B̂(θ ) =
β2(θ ) − α2(θ )β0 (θ )

β1(θ ) − α1(θ )β0 (θ )








 (5.4.4)

and

Ĉ = 0 1[ ], and D̂(θ ) = β0(θ ) (5.4.5)
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For control purposes, a fixed gain regulator of the form

u(k) = −Cc(θ )x̂(k) (5.4.6)

was used where u is the joint rate command signal.  The state estimate x̂(k)  was

obtained from an observer of the form

x̂(k + 1) = Â(θ )x̂(k) + B̂(θ )u(k) + K y(k) − x̂(k)( ) (5.4.7)

where y is the tip accelerometer measurement.  The observer gains K1 θ( )  and K2 θ( )

were found using (3.6.16) and (3.6.17).

K1 θ( ) = −α2 θ( ) (5.4.8)

and

K2 θ( ) = −α1 θ( ) (5.4.9)

To obtain the optimal gain Cc θ( ) , the model with the prefilter was used in a frequency

weighted LQR design with a weighted cost function of the form

J θ( ) = y k( )T

k=0

∞

∑ Qy k( ) + u k( )T Ru k( ) (5.4.10)

where Q  is the output weight matrix, and R  is the control weighting matrix.  The

numerical values of Q and R were determined using an iterative design procedure on the

linear model which avoided actuator saturation.  The final values used in the design are

Q=diag{0.002} and R=diag{0.02}.  Using

y k( ) = Ĉx̂ k( ) + D̂ θ( )u(k) (5.4.11)

the performance index Equation (5.4.10) was recast:

J θ( ) = x̂T k( )
k=0

∞

∑ ĈTQĈx̂ k( ) + 2 x̂ k( )T ĈTQD̂ θ( )u + uT D̂T θ( )QD̂ θ( ) + R( )u (5.4.12)
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The optimal feedback gain Cc θ( )  which minimizes the performance index J θ( ) for the

four values of θ  in Equation (5.4.10) was found using Matlab software tools (Matlab,

1992).

An implementation of the SVO controller in the Shuttle software was identified.  This

strategy, illustrated in Figure 5.4.1, allows use of all existing RMS health and safety

monitoring functions in an effort to simplify flight development work. The SVO

controller would be a software module which acts as a preprocessor to the existing
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Figure 5.4.1 Proposed SVO Controller Implementation in Shuttle Software
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RMS Command Output Processor (COP).  It would be turned on and off using the

executive function of the existing software by a flag which would activate the controller

when RMS joint move commands are zeroed.  Using motor rate and/or acceleration

feedback measurements, the controller would damp the free response of the arm to

some level at which time the normal position-hold function of the arm would be

activated.  With this implementation, the active damping function of the controller could

be expanded to damp RMS motions following Shuttle thruster firings as well.

5.5  Active Damping Results

The SVO controller was evaluated on the DRS nonlinear simulation.  The tip position

following a 3-second shoulder-yaw pulse rate command is shown in Figure 5.5.1.  The

top figure represents standard RMS operation and the bottom line represents actively

damped performance.  The time required to damp the tip oscillation to ±1 inch is

decreased by a factor of 3.  The shoulder-pitch servo torque following the 3-second

shoulder-pitch pulse rate command is shown in Figure 5.5.2.  In addition, after 90

seconds a Shuttle thruster roll doublet firing was simulated for 6 seconds.  The upper

plot represents simulated standard RMS operation while the bottom plot represents

closed-loop performance with the SVO controller.  In this time history the controller

has the effect of reducing the applied torque by a factor of 2.  This provides the added

potential benefit of reducing the structural stress in the arm following routine

maneuvers involving either joint commands or Shuttle thruster firings.
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5.6  Summary

An analytical study to determine the feasibility of actively augmenting the damping of

the Shuttle remote manipulator system has been developed.  System identification

studies were performed to evaluate collocated direct output feedback and non-collocated

dynamic spline varying controllers.  The SVO controller and logic were evaluated in a

nonlinear simulation which included the effects of kinetic and kinematic nonlinear arm

dynamics, computer time delays, and existing Shuttle health and safety software

functions.  The collocated results indicate that for both shoulder yaw and pitch joints,

the feedback of the tachometer measurement results in a small increase in RMS

damping, with very small increases in proportional gain producing instabilities.

Feedback of the acceleration measurement in both cases resulted in much larger

increases in damping.  SVO controllers were designed to enable improved performance

over a large workspace.  Based on the results, active damping of the remote

manipulator system appears feasible using the existing joint actuators and Shuttle

computers and software.  However, some additional feedback sensors in the form of

accelerometers located at the tip of the arm are required.

The SVO controller developed for this system does not change or delay the trained

operator input command to move the arm, thus the “feel” of the arm has not been

altered.  The SVO control system, when evaluated on the nonlinear simulation,

demonstrated significant improvement over the present arm performance:  (1) Damping

level is improved by a factor of 3;  (2) Peak joint torque is reduced by a factor of 2

following Shuttle thruster firings.
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CHAPTER 6

CONCLUSION AND RECOMMENDATIONS

The planar nonlinear dynamics of a reconfigurable electromechanical structure and

controller have been studied in this thesis.  Several unique and unusual nonlinear

compensators have been designed, compared, and contrasted.  The three main

contributions of this thesis are the following:

(1) A highly complex mathematical nonlinear reconfigurable system can be

controlled with an extremely low order SVO controller.  The SVO

controller can accommodate the non-collocated actuator problem when

kinematic nonlinearities are present.  

(2) The Markov parameters are the key to reducing the highly heterogeneous

parameters in multiple fixed controllers to one simply connected SVO

controller.  Understanding how the essential kernel of the mathematical

problem is changing with a measurable state (such as the elbow joint

angle) is fundamental to designing low order high performance SVO

controllers.  For example, the Markov parameters were found to be

extremely useful in reducing the manifold of changing parameters in the

mathematical system.  

(3) The derivation of the SVO controller can be developed using linear

identification techniques as opposed to high fidelity finite element
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modeling.  This is not to say that the high fidelity finite element based

simulation is not to be used or developed.  If an accurate physical model is

not available or too cumbersome, identification can be accomplished for

the optimal controller via a recurrent network using data gathering

experiments of a minimum of four arm orientations.  In addition, the

observer Markov parameters can be utilized to reduce the identified

parameters to a minimal set of identified network weights.  All of the

controller coefficients in the nonlinear optimal controller can be very

closely approximated by a third order polynomial in the elbow joint angle

(θ2 ).

There is a direct way of determining the system matrices A θ( ), B θ( ), C,  and D θ( )

without first computing the system Markov parameters by using the observer Markov

parameters in the spline varying observer canonical state space model form.  In this

similarity transformation, the time varying state space model is derived quickly for

control system design.  There is no need for induction which unnecessarily increases

control design development time.

The four advantages in using the SVO controller where the spline function

approximates the system model, observer, and controller gain are listed below:

(1) The spline function approximation is simply connected, thus the SVO

controller is more continuous than traditional gain scheduled controllers

when implemented on a time varying plant.  

 (2) The SVO controller is easier for real time implementations in storage and

computational effort when compared to traditional gain scheduled

compensators.
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(3) Where system identification is required, the spline function requires fewer

experiments.  Namely four experiments are required to identify the four

polynomials in each of the non zero elements in the controller.

(4) Startup transients are reduced.  When the estimator is determining the state

at all times during the maneuver, initial estimator transients can be

eliminated.

In the process of developing the SVO controller, an understanding of the physics of a

two-link model of a flexible manipulator provided useful insights to the tenuous task of

developing a high performance nonlinear controller.  When used alone, high fidelity

mathematical models obfuscate the control system designer while tackling the problem

of nonlinear kinematics.  High fidelity models can however, accurately predict the

performance of complex systems such as the SRMS (Gray, C., et al., 1985).  While a

high fidelity simulator is useful to test and fine tune a low order controller prior to real

time implementation, fundamental dynamics must be identified and utilized for low

order control system development.  For example, it is shown that the use of collocated

actuator sensor pairs (on the high fidelity simulator) does not appreciably affect the

damping levels when compared to an accelerometer sensor.

The two link model was useful in:

• Observing the behavior of the non-minimum phase zeroes when disparate

base boundary conditions are applied.

• Identifying the predominance of the fundamental mode in the open loop

performance of the slewing manipulator.

• Determining the separation in frequency between successive modes.

• Understanding the relative merits of the various compensators under study.  
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These conclusions are highlighted in the following paragraphs.

Transforming the open loop dynamics into modal form highlights the dominance in the

open loop response of the fundamental mode.  For example, the infinity norm

amplitude ratio of the 1st versus the 2nd mode is 40:1, and the infinity norm ratio of the

1st versus the 3rd mode is 600:1 for medium payload weight classes.  For higher order

modes the infinity norm ratio is still larger.  These infinity norm ratios are shown to

increase further still for heavier payload masses.  

In addition, the frequency separation between the first and second modal frequency for

the manipulator model increases as the payload mass is increased.  If no payload is

used, the 2nd modal frequency is 6 times the frequency of the 1st mode.  The 3rd

modal frequency is 18 times the frequency of the 1st mode, etc.  If a payload 100 times

the mass of the arm is considered, the 2nd modal frequency is 98 times the frequency

of the 1st mode.  The 3rd modal frequency is 316 times the frequency of the 1st mode,

etc.  It is worth noting that for the SRMS a payload to arm mass ratio of 100 is

considered a small to medium class in terms of payload mass.

A cost comparison of the controllers under study was summarized.  All of the

compensators improved the open loop performance over the workspace.  The overall

improvement in performance is 7:1 for the fixed gain compensator, 3:1 for the fixed

robust compensator, and 20:1 for the SVO compensator.  Although the stability margin

for the fixed gain controller was relatively low (10° phase margin), its performance

was about two times better than the fixed robust compensator ( 40°  phase margin).

Thus by increasing the robustness of the closed loop system, the fixed robust

compensator sacrificed on performance.
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As a future recommendation, it should be noted that if possible, one should use

collocated sensors and actuator pairs for controlling the flexible body modes.  This

would facilitate the task of absorbing the flexible energy in the structure in a local

manner.  For example, one can design the joints such that the gearbox in the joints of

the electromechanical structure allow the vibratory energy passing through the joint to

be observed.  This is most readily accomplished by making the joint element more

compliant relative to the surrounding boom elements, or providing strain energy

sensors surrounding the joint in a collocated fashion.  In the case of non-existent or

insufficient collocated sensor/actuator pairs, a dynamic model based controller is

required to improve dynamic performance.  Present adaptive control techniques cannot

accommodate the non-collocated actuator problem when kinematic nonlinearities are

present.

Finally, the SVO controller was evaluated on the DRS nonlinear simulation.  An

implementation of the SVO controller in the Shuttle software was identified.  This

strategy allows use of all existing RMS health and safety monitoring functions.  The

SVO controller developed for this system does not change or delay the trained operator

input command to move the arm, thus the “feel” of the arm has not been altered.  The

SVO controller and logic were evaluated in a nonlinear simulation, which included the

effects of kinetic and kinematic nonlinear arm dynamics, computer time delays, and

existing Shuttle health and safety software functions.  Based on the results, active

damping of the remote manipulator system can be accomplished using the existing joint

actuators and Shuttle computers and software.  However, some additional feedback

sensors in the form of accelerometers located at the tip of the arm are required.  The

accelerometer sensor location was identified which allowed the nonlinear compensator

to operate over large variations in the shoulder yaw, elbow pitch, and wrist roll, yaw

and pitch arm orientations.  The astronaut/operators assessment of the compensator
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noted that there was a “significant increase in damping.”  Loads reduction for the RMS

with the compensator was also cited as an important factor several times during the

sessions.  The SVO controller demonstrated significant improvement over the present

arm performance:  (1) Damping level was improved by a factor of 3;  (2) Peak joint

torque was reduced by a factor of 2 following Shuttle thruster firings.  The time

required to damp the tip oscillation to ±1 inch is decreased by a factor of 3.  This

provides the added potential benefit of reducing the structural stress in the arm

following routine maneuvers involving either joint commands or Shuttle thruster

firings.
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Appendix A

Hyperstability and Positive Definite Systems - Definitions

Hyperstable
___________

The system

ẋ = Ax + Bu

y = Cx + Du
(A.1)

is      Hyperstable      if for any u where

′u (t)y(t)dt ≤ δ x(0)[ ]
0

T

∫
0≤t≤T
sup x(t) (A.2)

the following inequality holds

x(t) ≤ k x(0) + δ( ) (A.3)

where δ  and k  are positive constants.

Asymptotically Hyperstable
___________________________

The system is     Asymptotically         Hyperstable      if:

lim
t→∞

x(t) = 0 (A.4)

Also applies.

Positive Real (PR)
__________________

A rational transfer function matrix z(s) is     Positive        Real     if:
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1)  z(s)has real elements

2)  z(s) has no poles in Re s[ ] > 0, the poles on the jω  axis are simple and the

associated residue matrix is non-negative definite Hermitian.

3)  z( jω ) + z*( jω ) is non-negative definite Hermitian.

where z*  implies complex conjugate of z

Also

If H(s) = M(s) / N(s) is a     Positive        Real      (PR) Transfer function, then:

1) The order of M(s) equals the order of N(s)  ±  1.

2)  1 / H(s) is positive real.

3)  M(s) and N(s)  have real coefficients.

4)  M(s) and N(s)  satisfy the Hurwitz criterion.

5)  M(s) and N(s)  have zeroes with negative real parts.

Note:  It can also be shown that PR matrices have no transmission zeros or

poles in the open right-half of the complex plane, and that the poles on the

imaginary axis are simple and have non-negative definite residues (Anderson,

1967).

Strictly Positive Real (SPR)
___________________________

For a linear transfer function z(s):

1) If z(s) is Positive Real ⇔ it is hyperstable.

2)  if z(s) is     Strictly        Positive        Real          . ⇔ it is asymptotically hyperstable.
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     Kalman-Yacubovich        Lemma

The transfer function

H(s) = D + C(sI − A)−1 B (A.5)

is Strictly Positive Real if there exists a symmetric positive definite matrix P and a

matrix K and L such that for  any positive definite Q,

AT P + PA = −Q

BT P + K T LT = C
(A.6)

If D=0, then H(s) is Strictly Positive Real if

AT P + PA = −Q

BT P = C
(A.7)

    Passive   

If a system ẋ = Ax  has a negative definite dynamic matrix ( A < 0 or equivalently

A + A T < 0) the system is passive.  Where A = T −1AT .

Note: Geometrically, A + A T < 0 means: ∠(x, Ax) ∈(90°,270°).  Thus x(t)T x(t)

decreases as t → ∞ since the component of ẋ  projected onto x  is in a direction

opposite to x .  See Figure A.1.

Ax

x

Figure A.1 Geometric Interpretation of A + A T < 0
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